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Abstract 

Creating a composed image from a set of aerial images is a fundamental step in orthomosaic 

generation. One of the processes involved in this technique is determining an optimal seamline 

in an overlapping region to stitch image patches seamlessly. Most previous studies have solved 

this optimization problem by searching for a one-pixel-wide seamline with an objective function. 

This strategy significantly reduced pixel mismatches on the seamline caused by geometric 

distortions of images but did not fully consider color discontinuity and mismatch problems that 

occur around the seamline, which sometimes cause mosaicking artifacts. This study proposes a 

blending zone determination scheme with a novel path finding algorithm to reduce the 

occurrence of unwanted artifacts. Instead of searching for a one-pixel-wide seamline, a blending 

zone, which is a k-pixel-wide seamline that passes through high-similarity pixels in the 

overlapping region, is determined using a hierarchical structure. This strategy allows for not only 

seamless stitching but also smooth color blending of neighboring image patches. Moreover, the 

proposed method searches for a blending zone without the pre-process of highly mismatched 

pixel removal and additional geographic data of road vectors and digital surface/elevation 

models, which increases the usability of the approach. Qualitative and quantitative analyses of 

aerial images demonstrate the superiority of the proposed method to related methods in terms of 

avoidance of passing highly mismatched pixels. 
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1. Introduction 

Seamless image mosaicking has gained attention in the fields of photogrammetry and image 

processing because of the increasing use of digital aerial imagining system. Composing multiple 

aerial images into a single mosaicking image is necessary to generate an image that covers an 

entire region. The visual transitions between overlapping images should also be imperceptible. 

Aerial images are generally orthorectified with a digital elevation model (DEM) or digital surface 

model (DSM) before mosaicking. The tilt and relief displacement can be corrected. However, 

uncontained or inaccurate objects in DEM or DSM cannot be orthorectified correctly, which may 

cause geometric distortions and color variations around the seamline of adjacent images taken at 

different times and from different angles (Wan et al., 2013). Naïve approaches namely, image 

stacking and linear color blending, have been proven inappropriate in such cases. Thus, 

considerable research attention has been devoted to seamless and smooth image mosaicking. 

The main step in image mosaicking is seamline determination. Previous methods (Botterill 

et al., 2010; Chon et al., 2010; Fernandez et al., 1998; Kerschner, 2001; Mills and McLeod, 2013; 

Pan et al., 2015; Wan et al., 2013; Yu et al., 2012) search for a seamline with the optimal value 

of a defined objective function and stitch images using the determined seamline. Kerschner 

(2001) proposed the twin snake method, which uses two snakes or called active lines that start 

from the opposite borders of an overlapping area. These two snakes attract each other and change 

their shapes dynamically. The optimal seamline is determined when these two snakes merge. A 

technique that minimizes local mismatches is proposed by Chon et al. (2010). The highly 

mismatched pixels are removed in preprocessing to alleviate geometric distortion, and a shortest 

path algorithm is applied to search for the optimal seamline in the remaining pixels. Wan et al. 

(2012, 2013) and Wang et al. (2012) focused on ways to prevent from seamlines crossing objects 

and buildings that have higher elevations than the ground. A seamline that follows the centerlines 

of roads or the skeletons of overlapping regions is determined with the aid of vector road 



information. Pan et al. (2012) integrated the differences of pixel gradients and colors in the 

objective function to avoid seamlines passing through object edges. Yu et al. (2012) introduced 

an integrated objective function that considers color differences, edge features, textures, and 

image saliency. The features are combined as a weighted sum to represent the overall cost of a 

pixel in the image. Recently, several advanced algorithms such as change detection and image 

matching are used with pathing finding algorithm to avoid seamlines passing objects. Pan et al. 

(2014, 2015) utilized segmentation and region change rate in seamline determination. Mean shift 

algorithm and change detection are performed to select the preferred regions, and Dijkstra’s 

algorithm with differential cost is adopted to determine an optimal seamline in the defined 

regions. Pang et al. (2016) adopted semi-global matching method to identify obstacle and non-

obstacle areas prior to the seamline determination. Li et al. (2016) used graph cut algorithm for 

multiple image mosaicking. In addition, Pan et al. (2009 and 2014) and Mills and McLeod (2013) 

presented systems that generate seamline networks using graph-based approaches with the aid 

of Voronoi diagrams. Similarly, Chen et al. (2014) guided the seamline network passing through 

low-altitude areas based on the elevation information in DSM. The abovementioned methods 

yield good results. However, color discontinuity and seam artifact may still exist around the 

seamline after mosaicking and color blending because that only one-pixel-wide seamline is 

considered in the optimization problem. 

To ease the artifact problem, a k-pixel-wide blending zone is considered in image 

mosaicking. In the proposed method, a semi-optimal blending zone is extracted efficiently to 

stitch the neighboring image patches and smoothen color transition in the overlapping region. 

The blending zone is determined in a coarse-level rather than the finest-level of image pyramids 

to consider computational efficiency. Moreover, inspired by the method of Chon et al. (2010), 

which removes highly mismatched pixels with an optimal threshold value prior to the 

determination of a seamline, a new objective function with an extension of Dijkstra’s algorithm 

is proposed to search for a seamline that passes though homogenous regions rather than the 



shortest seamline that may pass highly mismatched pixels. The proposed method has the 

advantages of searching for a seamline without the requirements of high-cost pixel thresholding 

and additional geographic data, compared with the related methods (Chen et al., 2014; Chon et 

al., 2010; Wang et al., 2012; Wan et al., 2013). Experimental results confirmed that the obtained 

blending zone tends to pass broad homogenous channels, such as wide roads, which can alleviate 

the problem of discontinuous color transition in the color blending step. The remainder of this 

paper is organized as follows. Section 2 presents the objective function and blending zone 

determination method. Section 3 discusses the experimental results. Section 4 presents the 

conclusions, and discusses limitations of the proposed method and future work. 

2. Blending Zone Determination 

2.1 Objective Function 

The measurement of pixel mismatch in the objective function is used in previous studies to 

search for a one-pixel-wide seamline. However, the pixel mismatches that occur around the 

seamline are not considered and sometimes cause artifacts after color blending. By considering 

both seamline determination and transition smoothness, which is the color transition from one 

image path to another around the determined seamline, the objective function is defined to search 

for a k-pixel-wide blending zone. Using the measurement of pixel color difference, the objective 

function measuring the cost of a blending zone Z is defined as 

ψ(𝐙) =
1

𝑁𝑧
∑ |𝐼𝑎(𝑝) − 𝐼𝑏(𝑝)|𝑝∈𝐙 ,                 (1) 

where 𝑁𝑧 denotes the number of pixels in zone Z, and 𝐼𝑎(𝑝) and 𝐼𝑏(𝑝) are the intensities of 

the corresponding pixels in overlapping regions of the images 𝐼𝑎 and 𝐼𝑏, respectively. Note 

that other definitions of pixel costs, such as pixel gradient (Pan et al., 2012) and differential cost 

(Pan et al., 2015), can be integrated into or replace Eq. (1). 



 

Figure 1. Illustration of the blending zone. The blending zone is a k-pixel-wide seamline with a 

Gaussian weighting function for color blending and mosaicking. The pixels in the centerline of 

the blending zone have the highest weight. 

Considering color discontinuity around the seamline, the previous studies (Brown and Lowe 

2007; Wang and Ng 2012) applied a color blending algorithm with weighting function to the 

neighborhood of the determined one-pixel-wide seamline. The weighting function is generally 

defined as the inverse distance from a pixel to the seamline. By integrating the weighting 

function employed in color blending into the objective function, Eq. (1) is reformulated as 

ψ(𝐙) =
∑ (|𝐼𝑎(𝑝)−𝐼𝑏(𝑝)|×𝑤𝑝)𝑝∈𝐙

𝑁𝑧×∑ 𝑤𝑝𝑝∈𝐙
,                     (2) 

where 𝑤𝑝 is the weight of pixel p, which is defined as the inverse Gaussian of the distance 

between p and the centerline of the determined zone, as shown in Figure 1. Solving the 

optimization in Eq. (2) requires an exhaustive search that is computationally intensive. 

Specifically, the weight calculation depends on the centerline of the determined zone; however, 

the zone determination requires information on pixel weights. To reduce the computational cost, 

the pixel differences multiplying weights in Eq. (2) is reduced to a convolution scheme. The 

convolution scheme is an integral of the point-wise multiplication of the pixel differences and 

the Gaussian weighting function. In the implementation, a 𝑘 × 𝑘 Gaussian kernel, denoted as 

G, is used, and the pixels in the centerline of the zone are applied to the convolution, that is, 

ψ(𝐙) ≅ ψ(𝐒) =
1

𝑁𝑆
∑ (𝐺 ⋇ |𝐼𝑎(𝑝) − 𝐼𝑏(𝑝)|)𝑝∈𝐒 ,           (3) 

where S is the one-pixel-wide centerline of zone Z. 𝑁𝑆 denotes the number of pixels in S, and 



“*” represents the convolution operator. In this manner, the resulting cost of seamline S 

(i.e.,ψ(𝐒)) approximates to the cost of zone Z calculated in Eq. (2) (i.e., ψ(𝐙)), and a semi-

optimal k-pixel-wide blending zone can be obtained. 

 

Figure 2. Illustration of the hierarchical structure in the proposed blending zone determination. 

The blending zone is obtained by projecting the one-pixel-wide seamline in level m to level 1 of 

the image pyramid. 

The optimization equation in Eq. (3) is solved using a hierarchical structure, as illustrated 

in Figure 2, to further consider computational efficiency. The smoothing filter with Gaussian 

kernel is applied to the overlapping images. That is, the image Gaussian pyramids for images 𝐼𝑎 

and 𝐼𝑏 are constructed, and a seamline is determined in a specified level of the image pyramids, 

which are denoted by 𝐼𝑚
𝑎  and 𝐼𝑚

𝑏 . Hence, Eq. (3) is simplified as 

ψ(𝐒𝑚) =
1

𝑁𝑆𝑚

∑ |𝐼𝑚
𝑎 (𝑝) − 𝐼𝑚

𝑏 (𝑝)|𝑝∈𝐒𝑚
,                      (4) 

where 𝑁𝑆𝑚
 is the number of pixels in the seamline 𝐒𝑚 located in the m-th level of the image 

pyramid (denoted as 𝐿𝑚). After extracting seamline 𝐒𝑚 using a path finding algorithm, which 

will be described in Section 2.2, the blending zone can be obtained by projecting the seamline 

𝐒𝑚 from 𝐿𝑚 to 𝐿1 (the finest level) of the image pyramid, that is, 

ψ(𝐙∗) ≅ ψ(𝐙) =
∑ (|𝐼1

𝑎(𝑝)−𝐼1
𝑏(𝑝)|×𝑤𝑝)𝑝∈𝐙

𝑁Z×∑ 𝑤𝑝𝑝∈𝐙
,                               (5) 

where 𝐙∗ is the zone obtained by projecting 𝐒𝑚 
from 𝐿𝑚 to 𝐿1 of the pyramid. 𝐼1

𝑎(𝑝) and 

𝐼1
𝑏(𝑝) denote the corresponding pixels in 𝐿1 of the image pyramids. Thus, a semi-optimal 



blending zone can be obtained, and the cost of the obtained blending zone approximates to the 

cost of the optimal blending zone, that is, ψ(𝐙) ≅ ψ(𝐙∗). 

2.2 Path Finding Using Greedy Strategy 

Following the previous study (Chon et al., 2010), the two intersecting pixels of the borders 

of overlapping images are selected as starting and ending pixels of the seamline (see Figure 1). 

An extension of the standard shortest path algorithm called Dijkstra’s algorithm is performed to 

search for the optimal seamline in a specified level of the cost map calculated based on color 

difference. The overlapping region is regarded as an eight-connectivity graph, as illustrated in 

Figure 3, which means that the pixels adjacent to (i, j) are (i-1, j-1), (i-1, j), (i-1, j+1), (i, j-1), (i, 

j+1), (i+1, j-1), (i+1, j), and (i+1, j+1). Given the starting pixel s and the ending pixel e, Dijkstra’s 

algorithm finds the shortest path, that is, the minimal-cost path, between these two pixels using 

greedy strategy. This algorithm repeatedly selects a pixel v, which is nearest to the starting pixel 

s, from the unselected pixel set, removes pixel v from the unselected pixel set, and declares the 

distance to be the actual shortest distance from s to v. The adjacent pixels of v, denoted as w, are 

then checked to determine if a shorter path can be found by passing through pixel v followed by 

the relevant outgoing edges of pixel v, that is, 

𝑠𝐷𝑖𝑠𝑡(𝑤) = min{𝑠𝐷𝑖𝑠𝑡(𝑤), 𝑠𝐷𝑖𝑠𝑡(𝑣) + 𝐶𝑜𝑠𝑡(𝑤)}, ∀𝑤 ∈ 𝑁𝑒𝑖𝑔ℎ(𝑣),      (6) 

where 𝑁𝑒𝑖𝑔ℎ(𝑣) is the adjacent pixel set of v, 𝑠𝐷𝑖𝑠𝑡(𝑤) represents the cost of the shortest 

path from the starting pixel s to w, and 𝐶𝑜𝑠𝑡(𝑤)  denotes the cost of pixel w, that 

is, |𝐼𝑚
𝑎 (𝑤) − 𝐼𝑚

𝑏 (𝑤)|. The iteration is terminated when all pixels in the overlapping region are 

visited. Next, the shortest path is extracted by backtracking the path from the ending pixel to the 

starting pixel. 

The shortest path is a path with minimal total cost. However, the shortest path may pass 

through high-cost and highly mismatched pixels because this path prefers a shorter path with 

minimal total cost to a lengthy path with low-cost pixels. For instance, the shortest path generated 



by Dijkstra’s algorithm in Figure 4 passes through the pixel with the cost of 12 [pixel (2, 2)], 

which is the pixel with the highest cost in the test data. The high-cost pixel corresponds to high 

mismatch. People more easily perceive seam artifacts from a path containing highly mismatched 

pixels despite its shortness, compared with that from a lengthy path with low-cost pixels (Chon 

et al., 2010). 

 

Figure 3. Illustration of graph topology in seamline determination. (a) A simulated cost map of 

size 3 × 3. (b) The initial cost of (a). The pixel costs are initially set to infinity except the starting 

pixel. (c) An eight-connectivity graph containing the information of (a) and (b). 

 

Figure 4. Illustration of Dijkstra’s algorithm. (a)–(e) Steps of the algorithm. (f) Shortest path 

result. The two numbers shown in each node represent the pixel cost and the total cost from the 

starting pixel to this pixel. 

To solve this problem, Chon et al. (2010) proposed the removal of high-cost pixels with a 

determined threshold in the preprocessing, and Dijkstra’s algorithm is then applied to search for 



the optimal seamline in the remaining pixels. The threshold used to filter out high-cost pixels is 

vital for a successful path search. A seamline exists after thresholding, whereas the number of 

highly mismatched pixels is minimized in the remaining regions. Searching for the optimal 

threshold requires an iteration procedure that contains the steps of pixel thresholding and shortest 

path determination. Specifically, the algorithm iteratively probes for a threshold until a path 

between the starting and ending pixels can be found and the cost of path from Dijkstra’s 

algorithm is minimal. This approach successfully improves Dijkstra’s algorithm in terms of high-

cost pixel avoidance and reduces the possibility of passing highly mismatched pixels. However, 

iteratively performing Dijkstra’s algorithm is computationally insensitive for images of large 

sizes. In addition, the effect of removing significant mismatches is reduced for images of urban 

areas because low-mismatch paths cannot be found. The absence of these paths is because urban 

areas generally contain many ground objects with large relief displacements. 

This study proposed a simple and efficient path finding algorithm without the determination 

of optimal thresholds and the preprocess of high-cost pixel removal. The basic idea is to consider 

path length in the path search optimization and adopt average-cost minimization instead of total-

cost minimization in the objective function. The new objective function prefers a lengthy path 

that contains local low-cost pixels rather than a shorter path that contains high-cost pixels. 

Therefore, the problem in Dijkstra’s algorithm can be alleviated effectively. Moreover, the path 

finding algorithm with this objective function is a non-iterative process and has computational 

efficiency, which is similar to Dijkstra’s algorithm. This idea is realized by reformulating Eq. (6) 

as  

𝑎𝑣𝑔𝐷𝑖𝑠𝑡(𝑣) = 𝑚𝑖𝑛 {𝑎𝑣𝑔𝐷𝑖𝑠𝑡(𝑤),
𝑎𝑣𝑔𝐷𝑖𝑠𝑡(𝑤)×𝐿(𝑤)+𝐶𝑜𝑠𝑡(𝑣)

𝐿(𝑤)+1
} , ∀𝑤 ∈ 𝑁𝑒𝑖𝑔ℎ(𝑣),    (7) 

where 𝐿(𝑤) is the path length from the starting pixel s to the ending pixel w. 𝑎𝑣𝑔𝐷𝑖𝑠𝑡(𝑣) 

represents the minimal average-cost of the path from s to w, which is equal to 

𝑠𝐷𝑖𝑠𝑡(𝑣) (𝐿(𝑤) + 1)⁄  that means the shortest path distance 𝑠𝐷𝑖𝑠𝑡(𝑣) is normalized by the 



current path length 𝐿(𝑤) + 1. 

A comparison of path finding using the objective functions in Eqs. (6) and (7) is shown in 

Figure 5. The results indicate that a seamline from the proposed objective function can avoid 

passing locally high-cost pixels. However, the selected seamline with minimal average-cost 

tends to be circuitous in low-cost regions, making this seamline inappropriate for mosaicking. 

To solve this problem, the greedy search strategy is replaced by a breadth-first search strategy, 

which is described in Section 2.3. 

 

Figure 5. Comparison of different objective functions with greedy traversal strategy. Left: Total 

cost minimization in Eq. (6). Right: Average cost minimization in Eq. (7). 

2.3 Path Finding Using Breadth-first Traversal Strategy 

The greedy traversal strategy with objective function in Eq. (7) enables the seamline to 

move forward and backward to the ending pixel, which potentially making the path circuitous. 

To solve this problem, a breadth-first traversal, which traverses the graph in level order, is 

utilized. The method traverses the adjacent pixels in the same level before moving to the next 

level. Hence, the moving direction of the seamline from the starting to the ending pixels is 

restricted to the same level or forwarded on the graph structure, which means that path 

circuitousness is significantly reduced because of the avoidance of a backward traversal. An 

illustration of path finding using breadth-first traversal is shown in Figure 6. With this traversal 

strategy, the proposed method can select a semi-optimal seamline in terms of average-cost 

minimization rather than an optimal one with circuitous problems. An example of the proposed 



path finding algorithm is provided in Figure 7. The simulated data in Figure 3 is tested, where 

the starting node is pixel (1,1). The nodes in the first and second levels of the traversal are marked 

by blue polygons in Figures 7(d) and 7(e), respectively. This level-order traversal strategy causes 

the determined seamline to move forward toward the ending node, that is, pixel (3, 3). The 

determined path is longer than that of Dijkstra’s algorithm in Figure 4, but the path does not pass 

the pixel with the highest cost, that is, pixel (2,2). Moreover, the circuitous problem shown in 

Figure 5 is avoided. 

 

Figure 6. Illustration of breadth-first search. Left: Tested graph. Right: Seamline determination 

using breadth-first search. The dashed line denotes the search path and the red path represents 

the selected seamline. 

 

Figure 7. Illustration of the proposed path finding algorithm using breadth-first traversal. 

(a)–(e) Steps of the algorithm. The nodes in the polygons in (d) and (e) are the nodes in 



the first and second levels of the graph structure, respectively. 

The following pseudo-code briefly describes the proposed optimal path finding algorithm. 

The input to the algorithm is a set of pixels in the overlapping region, an adjacency list of graph, 

and a set of pixel costs. Initially, the shortest distance of the starting pixel to itself is set to the 

pixel cost, that is, avgDist[s]←Cost[s], and all other pixels are set to infinity to indicate that 

those pixels are not yet processed. The algorithm literately selects a pixel, denoted as v, from the 

unselected pixel set through function BreathFirstSelection() using the breath-first search strategy. 

Subsequently, v is removed from pixel set V, and Eq. (7) is performed until pixel set V is empty. 

Input: V (the set of pixels 1..n) 

/*s: the starting pixel; e: the ending pixel; Cost[1..n]: the pixel cost; avgDist[1..n]: the average 

cost of the shortest path from the starting pixel to the other pixels.*/ 

Procedure PathFinding() { 

 for all pixel i in V, avgDist[i]←∞; 

    avgDist[s]←Cost[s]; 

repeat 

v←BreathFirstSelection (V); 

// select the pixel v under breath-first search order. 

remove v from V; 

perform Eq. (7); 

    until V is empty; 

backtrack the path from ending pixel e to starting pixel s and output the path; 

} 

2.3 Seamline Projection and Image Stitching 

Once the seamline is determined in 𝐿𝑚 of the image pyramid, this seamline is projected 

back to 𝐿1 to form a blending zone. That is, the obtained one-pixel-wide seamline 𝐒𝑚 in 𝐿𝑚 



of the image pyramid corresponds to the k-pixel-wide blending zone 𝐙∗  in 𝐿1 , where 𝑘 =

 2𝑚 + 1. Moreover, the centerline of seam-zone 𝐙∗ is extracted for image patch stitching. After 

the determination of blending zone, the colors of corresponding pixels in the overlapping region 

are blended to generate a smooth color transition in the determined blending zone. To reuse the 

image pyramid and Gaussian smoothing results, the multi-band color blending approach (Brown 

and Lowe, 2007) is adopted. The image patches in the blending zone are decomposed into several 

frequency-band components using a low-pass filter with a Gaussian kernel and the difference of 

Gaussian smoothing results. Different frequency bands of the overlapping image patches are then 

combined with an inverse-distance weighting function. Low-frequency components are mixed 

over a large spatial range, and fine details in the high-frequency components are blended over a 

short spatial range. Therefore, the ghost effects on the mismatched pixels can be eased further 

under this color blending scheme. Image stitching with the determined blending zone and color 

blending can generate a visually smooth transition and seamless mosaicking. 

3. Experimental Results 

3.1 Experimental Data 

Two datasets containing 16 and 21 aerial images were tested, as shown in Table 1. Dataset 

A was acquired in 2012 using an unmanned aerial vehicle (UAV) at an average altitude of 400 

meters with approximately 60% forward overlap and 40% side overlap. An UVA equipped with 

Canon IXUS 220HS with 24 mm focus length and 1.54 μm pixel size is used to acquire data. 

The ground resolution is 0.15 meters, and the image size is 4000 × 3000 pixels. Dataset B was 

acquired in 2013 at average altitude of 900 meters with approximately 80% forward overlap and 

60% side overlap. A manned aircraft equipped with Sony A850 with 20 mm focus length and 

5.95 μm pixel size is used to acquire data. The ground resolution is 0.1 meter, and the image 

size is 6048 × 4032 pixels. The images in Datasets A and B cover the urban and suburban areas 

in Kaohsiung and Tainan, Taiwan, respectively. The images in Dataset A have relatively higher 



density of buildings than that in Dataset B. Before mosaicking, all images were orthorectified to 

the Taiwan Datum 1997 for horizontal datum and Taiwan Vertical Datum 2001 for vertical 

datum with ground control points and DEM. Note that the ground objects in the UAV images 

exhibit large shifting or the so-called parallax effects. These parallax effects are attributed to the 

low altitude of the flying height and the presence of tall buildings in Dataset A. The buildings 

and parallax effects in the UAV images increase the difficulty of mosaicking. 

Table 1. Study areas and experimental data. 

Dataset 
Image size 

(pixel) 

Ground 

resolution (m) 
Aircraft 

Altitude 

(m) 

Acquisition 

date 
Study area 

A 
4000 × 

3000 
0.15  UAV 400 Nov., 2012 

Kaohsiung, 

Taiwan 

B 
6048 × 

4032 
0.1 

Manned 

aircraft 
900 Nov., 2013 

Tainan, 

Taiwan 

3.2 Parameter Setting  

The width of the blending zone, k, is the main parameter in the proposed approach. To test 

the sensitivity of mosaicking quality to this parameter, the proposed approach was tested using 

various values of k. The experimental results are shown in Figure 8. If a small k is used, e.g., k=9, 

the blending zone has a high possibility of passing through narrow alleys; however, the blending 

zone may also pass through a narrow homogenous channel in a high-cost region. If a large k is 

used, e.g., k=129, the blending zone prefers passing through wide roads and broad homogenous 

regions; however, the blending zone may miss alleys in urban areas. This experiment shows that 

the value of parameter k corresponds to the width of low-cost channels and roads. Searching for 

the optimal value of k without additional data and information is difficult and inefficient because 

the setting of this parameter is dependent on the input images. Therefore, the parameter k is 

turnable in the implementation. The parameter k is identical (k=33 and the number of levels in 

the image pyramid is 5) in all experiments for fair comparisons.  



 

Figure 8. Comparison of blending zones using different parameter values, including k=9 (left), 

33 (middle), and 129 (right). Top: Mosaicking results using the determined zones. The zone is 

displayed by transparent line segment. Bottom: Close-up views of the determined zones. 

3.3 Evaluation of Path Finding Algorithm 

The proposed algorithms were implemented by C++, and all experiments were conducted 

using a PC with a quad-core 2.6 GHz processor and 8 GB RAM. A single thread is adopted in 

the implementation, that is, only one CPU core is used. For an image pair in Dataset A, the 

average computation times for a one-pixel-wide seamline (calculated in 𝐿1  of the image 

pyramid) and a 33-pixel-wide blending zone (calculated in 𝐿5  and then the seamline is 

projected to 𝐿1) are 3.35 s and 0.67 s, respectively. Hence, computation time for blending zone 

determination is improved by 80% under the hierarchical structure. Moreover, the complex 

optimization problem for a k-pixel-wide seam zone in Eq. (2) is reduced to Eq. (4), in which a 

seamline is determined from a coarse-level image and then projected to the finest-level of the 

pyramid. The search space and size of the seamline, that is, the number of pixels in a seamline, 

are reduced significantly. The computational time of the proposed path finding algorithm 

increases linearly with the number of the calculated pixels, that is, 𝑁 2𝑚⁄  in 𝐿𝑚. Therefore, the 



algorithm time complexity is 𝑂(𝑁 2𝑚⁄ ), which is the same with Dijkstra’s algorithm, where N 

represents the number of pixels in 𝐿1. In the method of Chon et al. (2010), the algorithm is 

performed in 𝐿1 to remove the high-cost pixels while ensuring the existence of a seamline. The 

time complexity of this algorithm is 𝑂(𝑐𝑁), where 𝑐 is the number of iterations in the optimal 

threshold determination. The complexity analysis indicates that the proposed method does not 

increase computational loading compared with Dijkstra’s algorithm while improving the 

seamline and blending zone results. 

An objective function with breath-first traversal strategy is proposed to search for a 

seamline which contains local low-cost pixels rather than a shorter seamline that may have local 

high-cost pixels. To validate the effectiveness of this method, comparisons with Dijkstra’s 

algorithm (DA), constrained Dijkstra’s algorithm (CDA), which is proposed by Chon et al. 

(2010), and the shortest path algorithm with breadth-first traversal (SPB) were conducted. The 

path-finding approaches are compared using the images in 𝐿5. The comparison results are shown 

in Figures 9–11. The seamlines generated by DA, CDA, SPB, and the proposed method are 

represented in the cost maps by the colors blue, green, yellow, and cyan, respectively. The 

proposed method can deal with color images for color orthomosaicks. For a visual comparison, 

the gray cost maps representing the color differences and pixel costs are shown in Figures 9-11. 

To check whether the determined seamlines can avoid passing through highly mismatched pixels, 

the high-cost pixels (cost>20) on the seamline are marked as red. From the results, the seamline 

generated by Dijkstra’s algorithm is shorter than that generated by the proposed approach. 

However, the mismatch visualization shows that the seamline of the minimal total cost contains 

many high-cost pixels, that is, the pixels marked by red, which may result in color discontinuity. 

In contrast, the proposed approach considers the path length and generates a lengthy path that 

potentially avoids passing through high-cost pixels, which results in seamless mosaicking. CDA 

generally performs better than DA because of the removal of high-cost pixels prior to seamline 

determination. However, large relief displacements and high-density buildings in the tested 



datasets make it difficult to remove all highly mismatched pixels while finding a path. Thus, the 

result of CDA is slightly better than that of DA. Comparing SPB and the proposed method, SPB 

uses minimal cost, whereas the proposed method adopts minimal average-cost as the objective 

function. Therefore, the length of seamline generated by SPB is between that of the proposed 

method and that of DA. 

 

 

 

Figure 9. Comparison of the seamlines generated by DA, CDA, SPB, and the proposed method 

using an image pair in Dataset A. Left: Tested image pair. The overlapping region is visualized 

by pixel cost in gray levels. Right: Generated seamlines. The high-cost pixels are displayed on 

the seamline in different color (red). 



 

Figure 10. Comparison of the seamlines generated by DA, CDA, SPB, and the proposed method 

using an image pair in Dataset A. Left: Tested image pair. The overlapping region is visualized 

by pixel cost in gray levels. Right: Generated seamlines. 

 



 

Figure 11. Comparison of the seamlines generated by DA, CDA, SPB, and the proposed method 

using an image pair in Dataset B. Left: Tested image pair. The overlapping region is visualized 

by pixel cost in gray levels. Right: Generated seamlines. 



Two seamline quality measurements, called high-cost distortion (HD) and high-cost 

percentage (HP), are adopted to evaluate the pixel mismatch of a seamline in addition to the 

general statistics, average, standard deviation, and maximum of the pixel costs. HD is defined as 

the average cost of the top 10% high-cost pixels in the determined seamline, and HP refers to the 

percentage of pixels whose cost is higher than a specified threshold. The threshold is set to 20 in 

the experiments. HD and HP can reveal the highly mismatched information of a seamline. The 

measurement of the total cost was not used in the experiment because of the different lengths of 

seamlines in different test data. The statistical comparison results are shown in Table 2. The 

results show that the generated seamline has the lowest HD and HP. Hence, the proposed method 

has good performance on the highly mismatched pixel avoidance in seamline determination. 

Moreover, the lowest average and standard deviation of the pixel costs of the results also 

demonstrate the effectiveness of the proposed objective function. In addition, the proposed path 

Table 2. Comparison of determined seamlines in Dataset A. The average (denoted by 

Avg.), standard deviation (Std.) and maximum (Max.) of the pixel costs, high-cost distortion 

(HD), and high-cost percentage (HP) are shown in the Table. 

Dataset Method Avg. Std. Max. HD HP (%) Length 

Figure 9 

SPB 19.03 16.29 69 71.98 38.96 238 

DA 18.52 16.33 69 71.98 38.96 243 

CDA 18.42 16.23 69 70.05 38.30 240 

Ours 13.25 13.42 69 58.53 20.91 406 

Figure 10 

SPB 18.25 17.13 79 62.67 34.70 263 

DA 17.56 16.06 59 63.54 35.03 273 

CDA 17.51 15.98 51 67.09 36.80 272 

Ours 14.45 14.73 98 54.91 22.52 420 

Figure 11 

SPB 15.82 10.52 60 45.59 17.66 378 

DA 15.49 10.44 60 45.59 17.66 385 

CDA 15.41 10.40 60 45.28 17.58 380 

Ours 13.81 7.80 60 39.31 9.24 757 

 



finding method is efficient without the iterative process of optimal threshold determination for 

high-cost pixel removal compared with the method of (Chon et al., 2010). Compared with the 

related methods (Wan et al., 2012; Wang et al., 2012; Wan et al., 2013; Chen et al., 2014), the 

proposed method is easy to use because it does not require information of road vectors or 

elevation information in DSM. The generated seamline tends to pass low-cost roads in urban 

areas without any prior information (Figures 9–11). Hence, the visual comparisons in Figures 9–

11 and the statistical comparison in Table 2 show that the proposed path finding method, which 

searches for a seamline using breadth-first-search traversal and the objective function of average-

cost minimization, outperforms the related methods. 

3.4 Evaluation of Blending Zone Determination 

The comparison between k-pixel-wide blending zone and one-pixel-wide seamline using 

the proposed path finding algorithm was conducted to evaluate the effectiveness of the proposed 

blending zone. To allow for a fair comparison, the seamline is generated in 𝐿1 of the pyramid 

and is then thickened to a zone of the same width with the blending zone calculated from 𝐿5 of 

the pyramid. The comparison results are shown in Table 3. The results show that the blending 

zone calculated from 𝐿5  is better than the seamline calculated from 𝐿1  based on the 

measurements, HD, average, standard deviation, and maximum of the pixel costs. Visual 

Table 3. Comparison between blending zones generated in 𝐿5 and thickened zone from the seamline 

in 𝐿1. “#Pixels” represents the number of pixels in blending zone. 

Dataset 
Blending Zone from 𝐿5  Thickened Zone from Seamline in 𝐿1 

Avg. Std. Max. HD # Pixels Avg. Std. Max. HD # Pixels 

Figure 9 14.10 17.81 203 58.53 11.19e+4 25.14 33.80 228 110.20 10.70e+4 

Figure 10 13.94 17.29 177 54.90 11.52e+4 20.15 25.14 207 81.27 11.39e+4 

Figure 11 14.57 11.91 172 39.31 20.61e+4 21.24 21.74 220 71.98 18.66e+4 

 



comparisons in Figure 12 show that the seamline tends to pass narrow and homogenous channels, 

whereas the blending zone prefers broad and local low-cost channels. Therefore, the blending 

zone can alleviate mismatch and color discontinuity problems occurring around a seamline when 

image blending is performed after seamline determination. Table 3 also indicates that HD in the 

blending zone is improved (from HD=71.98 to HD=39.31), compared with the thickened 

seamline. 

 

Figure 12. Visual comparison of the blending zone calculated from 𝐿5  (left) and thickened 

seamline from 𝐿1  (right) of the image pyramid. The blending zones in the left figures and 

seamlines in the right figures are displayed by line segments. 

4. Conclusions, Limitation and Future Work 

An image mosaicking scheme was introduced in this study. Considering both seamline 

determination and color blending, a semi-optimal blending zone is extracted instead of a 



seamline. This blending zone is used in image patch stitching and color blending of overlapping 

patches, which can ease pixel mismatch and color discontinuity problems efficiently. The 

blending zone is determined in the hierarchical structure with the proposed path finding 

algorithm. The proposed approach can obtain a semi-optimal path that contains local low-cost 

pixels rather than the shortest and minimal-cost path that sometimes contains high-cost pixels. 

The experiments demonstrate that local high-cost pixels are avoided without the preprocessing 

of high-cost pixel removal and additional information, such as road vectors and DSM. Moreover, 

the qualitative and quantitative analyses of the UAV orthoimages demonstrate the superiority of 

the proposed method over related mosaicking methods in terms of seamless mosaicking. 

Moreover, the iteration process for optimal threshold determination is avoided, and the complex 

blending zone optimization problem is simplified through the extraction of seamline in a coarse-

level of the image pyramid. Search space and seamline size are reduced, thereby reducing the 

computational cost. 

At present, the proposed approach has difficulties in efficiently and automatically finding 

an appropriate value for parameter k, which is used to determine the width of the blending zone, 

because this parameter varies with the width of local homogenous regions in the input images. 

In the future, we plan to develop an adaptive approach for parameter k determination. The 

parameter value is determined based on the widths of local low-cost regions in an image pair. 

We also plan to apply the proposed path finding algorithm to seamline networks for multiple 

image mosaicking. Moreover, the out-of-core external mosaicking will be implemented using 

multi-core CPU and GPU, the information reconstruction technique (Lin et al., 2013) will be 

applied to the aerial images, and the mosaicking scheme integrated to generate a cloud-free 

image. 
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