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Cloud Removal from Multitemporal Satellite
Images Using Information Cloning

Chao-Hung Lin, Po-Hung Tsai, Kang-Hua Lai, and Jyun-Yuan Chen

Abstract—A cloud removal approach based on information
cloning is introduced. The approach removes cloud-contaminated
portions of a satellite image, and then reconstructs the informa-
tion of missing data utilizing temporal correlation of multitempo-
ral images. The basic idea is to clone information from cloud-free
patches to their corresponding cloud-contaminated patches under
the assumption that land covers change insignificantly over a
short period of time. The patch-based information reconstruction
is mathematically formulated as a Poisson equation and solved
using a global optimization process. Thus, the proposed approach
can potentially yield better results in terms of radiometric
accuracy and consistency compared with related approaches.
Some experimental analyses on sequences of images acquired by
the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor
are conducted. The experimental results show that the proposed
approach can process large clouds in a heterogeneous landscape,
which is difficult for cloud removal approaches. In addition,
quantitative and qualitative analyses on simulated data with
different cloud contamination conditions are conducted using
quality index and visual inspection, respectively, to evaluate the
performance of the proposed approach.

Index Terms—cloud removal, information cloning, Poisson
equation.

I. INTRODUCTION

GLOBALLY, the ETM+ land scenes are on average about
35 % cloud covered, as reported by Ju and Roy [1],

indicating that cloud covers are generally present in optical
satellite images. This phenomenon limits the usage of optical
images and increases the difficulty of image analysis. Thus,
considerable research efforts have been devoted to the topic of
cloud removal to ease the difficulties caused by cloud covers
[2–7]. If multitemporal images are acquired, the cloud-cover
problem has a chance to be eased by reconstructing the in-
formation of cloud-contaminated pixels under the assumption
that the land covers change insignificantly over a short period
of time.

The aim of this study is to remove clouds and reconstruct
information of missing data by taking advantage of the tem-
poral correlation of multitemporal images. An information
cloning algorithm is introduced to consistently reconstruct the
information of cloud-contaminated region using several high-
similarity and cloud-free patches acquired at different times.
Instead of reconstructing information pixel by pixel [2, 3],
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which may have the problem of radiometric inconsistency, we
propose a patch-based approach that mathematically formu-
lates the reconstruction problem as a Poisson equation and then
solve this equation using a global optimization process. In the
optimization, the selected cloud-free patches are globally and
consistently cloned in the corresponding cloud-contaminated
region. This process potentially results in good cloud removal
results in terms of radiometric accuracy and consistency.

In the past decade, a number of cloud removal approaches
have been proposed. These approaches can be classified into
three categories: inpainting-based, multispectral-based, and
multitemporal-based. In the first category, without the aid of
multispectral and multitemporal data, the cloud-contaminated
regions are synthesized using image synthesis and inpaint-
ing techniques [4–6]. The information inside the cloud-
contaminated region is synthesized by propagating the geo-
metrical flow inside that region. The synthesis approaches can
yield a visually plausible result, which is suitable for cloud-
free visualization. However, the lack of restoring informa-
tion of cloud-contaminated pixels makes them unsuitable for
further applications. In multispectral-based approaches, multi-
spectral data are utilized in cloud detection and removal [7–
11]. Rakwatin et al. [7] proposed a reconstruction algorithm to
restoring missing data of Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS) band 6 using histogram match-
ing and least squares fitting. Histogram matching corrects
detector-to-detector striping of the functional detectors, and
least squares fitting reconstructs the missing parts based on
a cubic polynomial derived from the relation between Aqua
MODIS bands 6 and 7. Feng et al. [8] regarded cloud removal
as a de-noising problem. Based on statistical characteristics
of images, an improved homomorphism filtering is applied
to filter out low-frequency components that potentially rep-
resent clouds. Similarly, Wang et al. [9] filtered out clouds
in the infrared band using wavelet frequency analysis, and
then reconstructed information of cloud-contaminated regions
for the other bands by a B-spline-based surface repairing
approach. Zhang et al. [10] proposed a geostatistical approach
to interpolate intensities of cloud-contaminated pixels using
kriging or cokriging interpolation techniques. Although the
above methods based on the ideas of de-noising and intensity
interpolation can restore cloud-contaminated pixels sometimes
with very good results, such methods tend to have difficulty
with large clouds. Recently, Roy et al. [11] proposed to use
information observed by MODIS to predict Landsat ETM+
images. In general, fusing information from different sensors
is constrained by spectral compatibility and spatial resolution.
Although MODIS has comparable spectral bands with ETM+,
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this sensor has a much coarser spatial resolution.
Compared with the multispectral-based approaches, the

multitemporal-based approaches [2, 3, 12–18] which rely
on both temporal and spatial coherence have a better abil-
ity to cope with large clouds. Melgani and Benabdelkader
[2, 3] proposed a contextual prediction process to determine
spectrotemporal relationships between the acquired images.
The spectrotemporal relationships are inferred from cloud-free
areas in the neighborhood of cloud-contaminated regions over
the available temporal images. Liew et al. [12, 13] adopted a
thresholding-based approach to identify the best cloud-free and
nonshadow pixels in a given region. A cloud-free image is then
generated by stitching or mosaicking the selected cloud-free
pixels. Gabarda and Cristóbal [14] introduced a cloud removal
method based on image fusion that involves a 1D pseudo-
Wigner distribution transformation and a pixel-wise cloud
model. Both features can be interpreted as a de-noising method
centered on pixel-level measurement. De-noising enables se-
lection of noise-free pixels from input images. Helmer and
Ruefenacht [15] utilized regression tree to detect and predict
pixel values underneath clouds and cloud shadows from other
image data captured at different times. An improved histogram
matching was then adopted to match adjacent scenes with
only spectral data and maximum likelihood classification.
Similarly, Jiao et al. [16], Wang et al. [17], and Tseng et al.
[18] corrected the radiometric of cloud-contaminated images
and their corresponding temporal images using means and
standard deviations of pixel intensities first. Wavelet-based
fusion method was then used to fuse boundaries of cloud-
contaminated regions. While the above methods [15–18] can
yield good results for homogenous regions, it should be noted
that the approaches based on histogram matching and data
fusion tend to have difficulty with heterogeneous landscapes.
Based on the shortcomings in the related works, the aim
and the main contribution of this study are to reconstruct
information of cloud-contaminated regions using patch-based
information cloning with global optimization, which can yield
better results in terms of radiometric accuracy and consistency.

II. CLOUD REMOVAL ALGORITHM

A. Overview

The workflow of the proposed cloud removal method is
schematically illustrated in Fig. 1. Our method consists of
three main processing steps: cloud detection, image quality
assessment, and information reconstruction. In the first step,
a semi-automatic cloud detection approach is adopted to
detect clouds and cloud shadows for the input images. A
quality assessment based on structural similarity index (SSIM)
[19] is then applied to sort the input images according to
image similarity. In the last step, the proposed information
cloning algorithm is performed to fill in the missing data after
removing the cloud-contaminated pixels.

B. Cloud and Cloud-Shadow Detection

Given a cloud-contaminated image, called target image and
denoted as IT , and a set of its corresponding images captured
at the same position but different times, called reference

Fig. 1. Workflow of the proposed cloud removal method which consists of
three main processing steps: cloud detection, image quality assessment, and
information reconstruction.

images and denoted as {IR1 , ..., IRn}, the aim is to remove
clouds and cloud shadows and to reconstruct the information
of missing data in the target image IT using the reference
images {IR1 , ..., IRn}. In the first step, a semi-automatic
approach is adopted to detect clouds and cloud shadows in
both the target and reference images. The approach presented
by Huang et al. [20] is applied, and then a simple user interface
is provided to manually refine the detection results. In the
automatic detection phase, relying on the physical fact that
clouds are bright and cold in the thermal band, a thresholding-
based approach is adopted to define the cloud boundaries
in the spectral-temperature space. Once the cloud pixels are
identified, their shadows are roughly predicted according to the
cloud location and the solar illumination direction. The dark
and connected components within the neighborhood of the
predicted shadows are identified as the shadow components.
This approach is simple and can detect most clouds and
cloud shadows. To robustly generate a cloud-free and cloud-
shadow-free image, a manual refinement is further preformed
to accurately determine the clouds and cloud shadows. In
the proposed system, users are allowed to refine the cloud
detection results through an interface with simple selection
and erasion operations.

C. Image Quality Assessment

Once the cloud-contaminated pixels in the target and ref-
erence images are identified, several cloud-free patches are
selected from the reference images {IR1 , ..., IRn} to recon-
struct the information of cloud-contaminated regions in the
target image IT . Taking radiometric accuracy into account,
the cloud-free patches are selected based on image similarity.
The simplest and most widely used similarity metric is the
mean squared error (MSE), which is computed by averaging
the squared intensity differences of pixels in the target and
reference images. The MSE can be simply calculated and
has a clear physical meaning. However, this metric does not
fully take structure similarity into account. To generate a
satisfactory cloud-free image, the structural similarity (SSIM)
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index introduced by Wang et al. [19] is used to estimate the
quality of working regions in the reference images. The SSIM
is briefly described in the following formulae, wherein this
similarity measurement has three components, namely, illumi-
nation L(IT , IR), contrast C(IT , IR), and structure S(IT , IR):

L(IT , IR) =
2µIT µIR + C1

µ2
IT

+ µ2
IR

+ C1

C(IT , IR) =
2σIT σIR + C2

σ2
IT

+ σ2
IR

+ C2
(1)

S(IT , IR) =
σIT IR + C3

σIT σIR + C3

where µI and σI represent the mean intensity and the stan-
dard deviation of image I , respectively, and σIT IR represents
the covariance coefficient between images IT and IR. The
constants C1, C2, and C3 are used to avoid instability when
the denominators are nearly zero. By combining these three
similarity components, the SSIM is formulated as follows:

SSIM(IT , IR)=[L(IT , IR)]α[C(IT , IR)]β [S(IT , IR)]γ , (2)

where α, β, and γ are the weighting factors for the similarity
components. Following the parameter setting given in [19],
the weighting factors are all set to 1.0 and C3 = C2/2. This
results in the following simplified form of SSIM:

SSIM(IT , IR) =
(2µIT µIR + C1)(2σIT IR + C2)

(µ2
IT

+ µ2
IR

+ C1)(σ2
IT

+ σ2
IR

+ C2)
(3)

In the experiments, the constants C1 and C2 are set to
(K1L)

2 and (K2L)
2, respectively, where L is the dynamic

range of pixels (i.e., 255 for an 8-bit channel) and K1 = K2 =
0.01. The SSIM index ranges from 1.0 (the most similar)
to -1.0 (the most dissimilar). To accurately estimate image
similarity and to select suitable cloning patches, the SSIM
index between the target and reference images is calculated
for the cloud-free regions only. Moreover, to cope with large
clouds in heterogeneous landscape, the information of a cloud-
contaminated region is reconstructed using several patches
in the reference images instead of using only one patch. In
this manner, many reference images may be selected, and
many patches may be embedded into the cloud-contaminated
regions, which tends to have the problem of radiometric
inconsistency. To solve this problem, the cloud amount is
considered in the patch selection. For a reference image, if
the amount of clouds in a patch is greater than a defined
threshold (set to 80% for all experiments), then the patches
will not be selected as candidates. For example, in Fig. 2, the
working area (the cloud-contaminated area) is marked by a red
circle. For this working area, the SSIM index of the reference
image captured at 2002/6/29 is 0.9, and the cloud amount in
the working area is greater than the defined threshold. Thus,
this patch will not be selected as a candidate. A comparison
of the patch selection with (right figure) and without (middle
figure) the constraint of cloud amount is shown in Fig. 3. The
number of selected reference images is reduced from six to

Fig. 2. Reference images sorted by SSIM index and cloud amount. The
images captured at 2002/6/29, 2000/11/14, and 2002/5/28 are filtered out
because of the constraint of cloud amount.

Fig. 3. Cloning patch selection. Left: the target image. Middle: there are
six reference images selected by SSIM index. Each image is represented by
a color. Right: there are four reference images selected by SSIM index with
the constraint of cloud amount.

four with the cloud amount constraint. The number of selected
patches is reduced, resulting in better reconstruction quality in
terms of radiometric consistency.

D. Information Reconstruction

Inspired by the concept of image editing presented by Perez
et al. [21], the details of selected patches are used to recon-
struct the information of corresponding cloud-contaminated
regions. Instead of correcting radiance and locally smoothing
boundaries of cloud-contaminated regions or reconstructing
information pixel by pixel, the problem is mathematically
formulated as a Poisson equation and solved using a global
optimization process. The idea is illustrated in Fig. 4. The
cloud-contaminated region in the target image IT is denoted
as Γ, and its boundary is denoted as ∂Γ. Let f be an unknown
image intensity function defined over the cloud-contaminated
region Γ (i.e., the unknown that is to be calculated). Let f∗

be the image intensity function defined over the target image
IT minus the cloud-contaminated region Γ, and let V be
a guidance vector field defined over the cloud-contaminated
region Γ. The vector field V is defined as the gradient of the
selected patches, and is used to guide the reconstruction pro-
cess to optimize the pixel intensities in the cloud-contaminated
regions. To find an accurate and optimized reconstruction
result (i.e., the solution of the unknown function f ), the
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Fig. 4. Illustration of information reconstruction. The information of cloud-
contaminated region Γ in target image IT is reconstructed by the selected
patch in the reference image IR with the aid of the gradient field V of the
selected patch.

problem is formulated as an optimization equation with the
boundary condition f |∂Γ= f∗|∂Γ:

min
f

∫∫
Γ

∣∣∇f − V
∣∣2 with f |∂Γ= f∗|∂Γ, (4)

where ∇ = ( ∂
∂x ,

∂
∂y ) is the gradient operator and can be

calculated by the following finite difference method:

∂f(x,y)
∂x = f(x+ 1, y)− f(x, y)

∂f(x,y)
∂y = f(x, y + 1)− f(x, y)

(5)

Eq. (4) aims to derive result f with a gradient that is as
close to the guidance vector field V (i.e., the details of selected
patches) as possible. The solution to Eq. (4) is the unique
solution of the following Poisson equation with Dirichlet
boundary conditions:

∆f = divV over Γ with f |∂Γ= f∗|∂Γ (6)

where ∆ = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator, and divV =
∂v1

∂x + ∂v2

∂y is the divergence of the vector field V = (v1, v2).
Similarly, the second derivatives ∂2/∂x2 and ∂2/∂y2 can be
calculated using the finite difference method as follows:

∂2f(x,y)
∂x2 = f(x+ 1, y) + f(x− 1, y)− 2f(x, y)

∂2f(x,y)
∂y2 = f(x, y + 1) + f(x, y − 1)− 2f(x, y)

(7)

Eqs. (4) and (6) are the fundamental formulations of infor-
mation reconstruction. In these equations, the boundary con-
dition f |∂Γ= f∗|∂Γ is used to enforce boundary consistency
between the scalar functions f and f∗. The equation mini-
mization indicates that the gradient of the unknown function
f∗ is close, in L2-norm, to the gradient field V of the selected
patches. The physical meaning is to interpolate inward while
enforcing the spatial variations of the unknown function f∗

to the guidance field V as close as possible. Therefore, the
minimization has a good probability of inconsistently cloning
the details of selected patches to the cloud-contaminated
regions, thereby resulting in a satisfactory cloud-free image
with consistent and accurate radiance.

Eqs. (4) and (6) can be discretized by a pixel grid. Let Np

be the pixel set of the 4-connected neighbors of pixel p in

the target image IT , and denote < p, q > as a pixel pair such
that pixel q is one of the 4-connected neighbors of pixel p
(i.e., q ∈ Np). Let f(p) be the value of image function f at
position/pixel p. The task is to compute the pixel intensities in
the cloud-contaminated region Γ. The discretization of Eq. (4)
yields the following discrete optimization equation:

min
f

∑
<p,q>∩Γ ̸=0

(f(p)−f(q)−vpq)2withf(s)=f∗(s) for all s ∈ ∂Γ,

(8)
where vpq = IR(p)− IR(q), which is the directional gradient
(i.e., the −→pq direction) of reference image at position p. Ac-
cording to Eq. (8), the following equation can be generalized.

|Np|f(p)−
∑

q∈Np∩Γ

f(q) =
∑

q∈Np∩∂Γ

f∗(q) +
∑
q∈N

vpq for all p ∈ Γ,

(9)
where |Np| is the number of neighbors in Np. Eq. (9) is iter-
atively solved until the unknown function f is converged. As
previously mentioned, the patches are selected based on image
quality/similarity. Thus, the information of cloud-contaminated
region is reconstructed by several different patches in reference
images. To generate a smooth guidance field, the guidance
vectors on the patch boundary are calculated by averaging the
gradients of neighboring patches as follows:

vpq =
(PRi(p)− PRi(q)) + (PRj (p)− PRj (q))

2
, (10)

where PRi and PRj represent the neighboring patches in
reference images IRi and IRj . When the cloud-contaminated
region Γ contains pixels on the border of target image (as
shown in Fig. 5, right), the effect of the reconstruction process
will be similar to that of extrapolation. In the implementation,
due to the lack of neighbor information on the border pixels,
these pixels are calculated using Eq. (11), which removes the
boundary terms in the right-hand side of Eq. (9).

|Np|fp −
∑
q∈N

fq =
∑
q∈N

vpq (11)

The cases of interpolation and extrapolation are shown in
Fig. 6. The working areas are encircled in red circles. In
the top panels of Fig. 6 (the interpolation case), Eq. (9)
is used to reconstruct information. In the bottom panels of
Fig. 6 (the extrapolation case), the border pixels are cal-
culated using Eq. (11), and the other pixels are calculated
using Eq. (9). If the working area is replaced by a selected
patch, a significant discontinuity on the brightness occurs. In
contrast, the proposed approach that uses global optimization
can potentially yield satisfactory results for either the interpo-
lation case or the extrapolation case. Note that a number of
works are proposed for improving or extending the gradient-
based information cloning/reconstruction technique to achieve
better visualization [22–25]. However, these approaches are
unsuitable to be applied to the cloud removal because of the
lack of consideration for radiometric accuracy.
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Fig. 5. Illustration of two interpolation cases. Left: interpolation; right:
extrapolation.

Fig. 6. Demonstration of interpolation (top figures) and extrapolation (bottom
figures). The working areas are marked by red circles. Left: the results of
replacing the working area (the red circle) by the selected patch; right: our
results.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Landsat-7 ETM+ images with different types of landscapes
were used to test the feasibility of the proposed approach.
The images captured near the east of Taiwan, Los Angeles,
and Taipei in August 1999, July 2000, and November 2000
were used as inputs. The cloud removal results are shown
in Figures 7-9. In Figs. 7 and 8, the visible bands (band
1 (0.45-0.52 micron), band 2 (0.52-0.60 micron), and band
3 (0.63-0.69 micron)) of ETM+ images are used, and there
are seven images selected as reference images. The cloud-
free patches in the reference images with the highest rank are
utilized to reconstruct the information of cloud-contaminated
regions. The path quality measured by SSIM is normalized,
and the values range from 0 (the worst quality) to 100 (the best
quality). The results of patch replacement are shown in figure
(a), and our results are shown in figure (b). The cloud-free
results are enhanced by a linear enhancement transformation
to provide a clear visual comparison. The enhanced results are
shown in figure (c). In Fig. 9, bands 1-3, band 4 (0.78-0.90
micron), band 5 (1.55-1.75 micron), and band 7 (2.09-2.35
micron) of ETM+ images are used. The cloud removal result

for each band and the pseudo-color image formed by bands 2-
4 are shown in this figure. These results on the multitemporal
images demonstrate the feasibility of our approach.

To demonstrate the robustness of our approach, we experi-
mented on images with a large amount of cloud covers. The
results are shown in Fig. 10. The images with 36%, 46%,
53%, 63%, and 70% of cloud covers were tested. With the
aid of patch-based reconstruction and global optimization,
satisfactory cloud-free results can be obtained even though
the amount of cloud covers is large. Note that the generated
results in Fig. 10 are misty because that some misty patches
are selected as reconstruction candidates.

An experiment of removing simulated cloud-contaminated
data and reconstructing the missing data was conducted to
quantify the reconstruction accuracy and to compare with the
related cloud removal approaches. The experimental procedure
was as follows. Select a sequence of images that contains sev-
eral different landscapes, simulate clouds by partly obscuring
a cloud-free image of the sequence, and then compare the
reconstructed image with the original cloud-free image. A sim-
ulation image containing four simulated cloud-contaminated
regions shown in Fig. 11 was tested. The experimental results
and statistical analyses are shown in Fig. 12 and Table I,
respectively. The patch replacement approach, radiometric
correction with wavelet-based color blending on boundaries
suggested by Jiao et al. [16], Wang et al. [17], and Tseng et
al. [18], and the proposed approach are evaluated. In [16–
18], the process of radiometric correction is performed to
correct the radiance of the cloud-contaminated image and
the corresponding temporal images by the means and stan-
dard deviations of image intensities. The wavelet-based color
blending/fusion is then performed to smooth the boundaries
of cloud-contaminated regions. The results generated by these
approaches may have a slight discontinuity at the cloud
boundaries even though the smoothing operation is applied
(see Fig. 12). In contrast, we formulate the reconstruction
problem as a Poisson equation and solve the equation by an
optimization process, yielding a better result in terms of radio-
metric consistency. To quantitatively compare the approaches,
the standard and commonly used measurements, root-mean-
square error (RMSE), peak signal-to-noise ratio (PSNR), and
SSIM index are used to evaluate the results shown in Fig. 12.
In this experiment, two reference images were tested for data
reconstruction. Reference image B has better similarity/quality
than reference image A. From the statistical table, it is
apparent that the approaches using reference image B (RI B)
have better reconstruction accuracy than those using reference
image A (RI A). Moreover, our approach generally has better
reconstruction accuracy compared with the related approaches.
This result is especially apparent for the case of large cloud in
a heterogeneous landscape. For example, compared with the
approach of radiometric correction and local color blending
(i.e., Approach C), our approach has a larger improvement in
Area 1 that contains urban areas and croplands (the RMSE
is improved from 6.99 to 6.28 (11.3%)) than in Area 4 that
contains mountains (the RMSE is improved from 2.60 to 2.54
(2.3%)). Note that the reconstruction quality can be greatly
improved using our approach when a higher quality reference
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Fig. 7. Cloud removal result. Top: the target (marked by red) and reference images, and the quality assessment of the selected patches. The reference images
are sorted by SSIM. The target image is captured near eastern Taiwan on August 8, 1999. Bottom: (a) the result of patch replacement; (b) our result; (c) the
enhancement of (b).

Fig. 8. Cloud removal result. Top: the target (marked by red) and reference images, and the quality assessment of the selected patches. The target image is
captured near Los Angeles on July 4, 2000. Bottom: (a) the result of patch replacement; (b) our result; (c) the enhancement of (b).
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Fig. 9. Cloud removal results. (a) The target image visualized using bands 4, 3, and 2; (b) the result generated by our approach; (c) the quality of the
embedded patches.

image is used or more reference images are used.

In Fig. 13, the accuracy assessment for the vegetation
growth area (change area) and the mountain area (non-change
area) was conducted. The target image is captured on May 27,
2003, and the images captured between July 3, 1999 and May
11, 2003 are selected as reference images. Using our approach,
the reconstruction of change area and un-change area has av-
erage RMSE of 8.75 and 5.51, respectively. This indicates that
non-harmonic changes of land cover decrease reconstruction
quality. However, if the reference images captured on May
11, 2003 and April 9, 2003 are used, the reconstruction has
RMSE of 7.5 and 7.43, respectively, which are close to the
worst case of un-change area reconstruction. Therefore, our
approach cannot accurately reconstruct information when land
covers change significantly over a short period of time. It is

a limitation of multitemporal-based approaches. For the case
that land covers change non-harmonically, our approach has
a chance to efficiently reconstruct information if the images
captured in the period of harmonic change of land covers are
selected as reference images.

To demonstrate the advantage of utilizing multitemporal
images, we conducted an experiment of information recon-
struction using a single reference image and multiple reference
images, respectively. The results are shown in Fig. 14 and
Table II. It is apparent that using multiple reference images
has better reconstruction accuracy and has comparable visual
quality compared with using a single reference image.
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Fig. 10. Top: the test data. The percentages of cloud amount in the test data are 36%, 46%, 53%, 63%, and 70%, respectively. Bottom: the cloud removal
results.

Fig. 11. Simulation data. Left: the target image containing four simulated cloud-contaminated regions, Area 1 (urban area and cropland), Area 2 (large
cropland), Area 3 (small cropland), and Area 4 (small mountain area). Middle: the reference image with low dynamic range. Right: the reference image with
high dynamic range. The target image is captured near Chiayi on October 26, 2002, and the reference images are captured on January 14, 2003 and March
3, 2003.

TABLE I
RECONSTRUCTION ACCURACY OF CLOUD REMOVAL RESULTS GENERATED BY THE APPROACHES OF PATCH REPLACEMENT (APPROACH A),

RADIOMETRIC CORRECTION (APPROACH B), RADIOMETRIC CORRECTION AND LOCAL COLOR BLENDING (APPROACH C), AND OUR APPROACH. THE
SIMULATION DATA AND THE REFERENCE IMAGES A AND B (DENOTED BY RI A AND RI B) SHOWN IN FIG. 11 ARE USED.

Cases Quality Approach A Approach B Approach C Our approach
Index (RI A/RI B) (RI A/RI B) (RI A/RI B) (RI A/RI B)

Area 1
RMSE 7.52 / 7.04 7.01 / 6.65 6.99 / 6.61 6.28 / 6.26
PSNR 29.85 / 29.95 30.98 / 30.99 31.01 / 31.02 32.24 / 32.25
SSIM 0.80 / 0.80 0.83 / 0.83 0.83 / 0.83 0.85 / 0.85

Area 2
RMSE 8.11 / 7.72 7.79 / 7.13 7.77 / 7.11 7.25 / 6.96
PSNR 29.28 / 30.15 30.30 / 31.11 30.39 / 31.14 31.01 / 31.35
SSIM 0.55 / 0.60 0.58 / 0.63 0.58 / 0.63 0.64 / 0.65

Area 3
RMSE 7.21 / 5.82 6.85 / 5.41 6.81 / 5.36 6.54 / 5.23
PSNR 30.50 / 32.72 31.15 / 33.27 31.20 / 33.29 31.91 / 33.80
SSIM 0.59 / 0.73 0.62 / 0.77 0.62 / 0.77 0.64 / 0.77

Area 4
RMSE 2.88 / 3.61 2.61 / 3.12 2.60 / 3.11 2.54 / 3.05
PSNR 38.75 / 38.01 39.89 / 38.39 39.95 / 38.41 40.11 / 38.51
SSIM 0.88 / 0.86 0.91 / 0.88 0.91 / 0.88 0.91 / 0.88
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Fig. 12. Results of cloud removal for the simulation data shown in
Fig. 11. Front left to right: results generated by patch replacement, radiometric
correction, radiometric correction and boundary blending, and our approach,
respectively. The results of using reference images A and B are shown at the
top and bottom, respectively.

Fig. 13. Accuracy assessment for the vegetation growth area (change area)
and the mountain area (non-change area). Top: the target image containing two
simulated cloud-contaminated areas. Bottom: the RMSE of the reconstruction
results using the patch replacement approach (red curve) and our approach
(black curve) with the reference images captured between July 3, 1999 and
May 11, 2003.

Fig. 14. Results of cloud removal using a single reference image and multiple
reference images. (a) The result of using multiple reference images (RI A,
RI B, and RI C); (b) the result of using a single reference image (RI C).

TABLE II
RECONSTRUCTION ACCURACY OF CLOUD REMOVAL RESULTS GENERATED
USING A SINGLE REFERENCE IMAGE AND MULTIPLE REFERENCE IMAGES.

Quality Single reference Multiple reference images
Index image (RI C) (RI A, RI B, RI C)
RMSE 6.55 6.38
PSNR 31.84 32.07
SSIM 0.80 0.89

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a novel cloud removal algorithm is intro-
duced. The cloud-contaminated portions of a satellite image
are removed, and then the information of missing data is
reconstructed using the correlation of multitemporal images.
Our approach is based on the patch-based information re-
construction strategy with the global optimization process.
The major improvement is that our approach makes better
use of appropriate temporal information to reconstruct the
information. Thus, our approach can potentially yield better
results in terms of radiometric accuracy and consistency,
compared with the related approaches. Experimental analyses
on sequences of images acquired by the Landsat-7 ETM+
sensor demonstrate the feasibility of our approach to process
clouds in a heterogeneous landscape, and demonstrate the
robustness of our approach to process images with a large
amount of clouds. Besides, the quantitative and qualitative
analyses on the simulated data with different cloud contam-
ination conditions show a clear superiority of our approach
over the related approaches. In the future, an automatic cloud
(including thin cloud) detection approach and a reconstruction
approach for thin cloud are planned to be developed.
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