
Efficient Camera Path Planning Algorithm
for Human Motion Overview

I-Cheng Yeh, Chao-Hung Lin, Hung-Jen Chien, and Tong-Yee Lee
National Cheng-Kung University, Taiwan

Abstract
Camera path planning for character motions is a
fundamental and important research topic, benefiting
many animation applications. Existing optimal-based
approaches are generally computationally expensive
and infeasible for interactive applications. In this
paper, we propose an efficient approach that can take
many constraints of finding the camera path into
account and can potentially enable interactive camera
control. Instead of solving a highly complicated
camera optimization problem in a spatiotemporal
four-dimensional space, we heuristically determine
the camera path based on an efficient greedy-based
tree traversal approach. The experimental results
show that the proposed approach can efficiently
generate a smooth, informative, and aesthetic cam-
era path that can reveal the significant features of
character motions. Moreover, the conducted user
study also shows that the generated camera paths
are comparable to those of a state-of-the-art ap-
proach and those made by professional animators.

Keywords: camera path planning, viewpoint se-
lection, visualization

1 Introduction
Generally, the manipulation of mocap data requires
a viewer to determine efficiently a proper camera
path for viewing the time-varying motions of human
characters. In this study, the main theme of cam-
era path planning is finding a sequence of suitable
camera configurations that can clearly display or il-
lustrate relevant characters and properly emphasize
significant motion features while obeying cinemato-
graphic rules [1] and visibility constraints [2]. Most
previous studies have focused on exploring optimal
paths based on visual quality measurements [3] that
integrate all related visual factors. However, this op-
timization problem is complex and time consuming
because of a significant number of visual factors and
the huge search space. Thus, approaches based on an
optimization solver are generally infeasible in real-
time computing, and can only deal with short clips.
In contrast, we aim at developing an algorithm that
efficiently selects a near-optimal camera path and ac-
counts for various potential visual factors.

A naı̈ve approach to solving the camera path opti-
mization problem is simply considering a camera path
that collects the best viewpoints of all frames. How-
ever, this simple method generally generates a highly
unsmooth path because slight changes in character
orientation may cause significant changes in estimat-
ing the best viewpoints [4]. A possible approach to
solving this problem is addressing the trade-off be-
tween the defined visual metrics for the best view-
points and frame coherence [4, 5]. Inspired by this
trade-off strategy, we introduce an efficient approach
that is capable of accounting for many possible vi-
sual factors and obtaining a near-optimal camera path
to emphasize significant motion features. Based on
the previous work [4] which integrates various vi-
sual metrics to generate a viewpoint space for each
frame, we further consider a more elaborate visibil-
ity descriptor to measure viewpoint quality. Instead
of solving a highly complicated camera optimization
problem in a spatiotemporal four-dimensional (4D)
space, we heuristically determine the camera path
based on an efficient greedy-based tree traversal ap-
proach. Thus, searching an optimal path in a huge
search space is simplified as a tree traversal prob-
lem. The computational cost is very low, and a near-
optimal path can be obtained. In addition, some cin-
ematographic techniques such as camera cuts, slow
motion and multi-view replay can be easily added to
the proposed scheme.

2 Related Work
In this section, we survey previous studies that are
most closely related to our work. For a more compre-
hensive study on camera control, we refer the reader
to [6].

There have been many studies reporting automatic
camera control strategies. Many of them have for-
mularized the camera path problem into an optimiza-
tion problem that maximizes local properties (e.g.,
subject’s visibility in each frame) while considering
global properties, such as camera speed [4, 5, 7, 8, 9].
In [7, 8, 9], the optimal position of the camera is first
determined for each individually shot subject accord-
ing to some defined constraints, and then all cam-
era parameters are automatically refined based on a
general-purpose continuous optimization scheme. To

satisfy the constraints, the constraint solver attempts
to find each camera parameter. This requires an ex-
haustive search over a huge space. Thus, some studies
have aimed at reducing the size of the search space by
utilizing standard hierarchical data structures [10, 11],
using stochastic search approaches over the search
space [9], restricting the solution to only a small set of
camera configurations [5, 10, 12], or adopting quan-
tum annealing [13] that is usually used for searching
in a huge space with many local minima. In this pa-
per, a greedy-based search heuristics is used to solve
the camera path optimization problem approximately
but efficiently. The proposed approach is very ef-
ficient because it reduces the optimization problem,
which has complex configurations over a huge high-
dimensional space, into a simple tree traversal prob-
lem defined over a tree structure. The computational
cost is very low, and a near-optimal path can be ob-
tained.

Occlusion between objects is one of the main prob-
lems in camera path planning. This problem can be
reduced or even solved by integrating the related met-
ric into the framework presented in [4, 8, 9, 14]. In
addition to handling such object occlusions, Assa et
al. [4] further examined the self-occlusions of various
human limbs. In this paper, an additional visibility
factor in object occlusions, named foreground factor,
is considered and integrated with the metric of static
scene occlusion. To the best of our knowledge, this
extension of occlusion constraint has not yet been ad-
dressed in previous studies on camera control.

Recently, some efficient camera control techniques
have been proposed [5, 15, 16]. The approach pro-
posed by Kwon and Lee [15] is based on the inte-
grated area spanned by the bone motions of charac-
ters. They focused on viewpoint selection, and used
selected viewpoints to interpolate camera paths. Assa
et al. [16] focused on dynamically and efficiently se-
lecting candidate viewpoints, instead of optimizing a
complex quality measurement. The selection is based
on the correlation between each view stream and the
motion in a given scene. Halper et al. [5] addressed
the trade-off between selecting the best viewpoints,
which are measured by a set of viewpoint quality met-
rics [8, 17], and enforcing frame coherence. Inspired
by this balancing concept [5] and the dynamic view-
point selection concept [16], we introduce an effi-
cient approach based on both tree traversal and greedy
search strategy, which does not only account for all
potential visual metrics to select the best viewpoints
but also obtains a near-optimal camera path to empha-
size significant motion features.

3 Viewpoint Quality Measurement
In this paper, we only address on finding the parameter
of camera position, whereas the viewing direction is
set as the vector looking at the root node, the view-up
vector is perpendicular to look-at vector and close to
z-axis, and the field-of-view angle is set to 60 degrees
in our experiment. Thus, in this section we describe
the quality measurement for viewpoint only. The met-

rics for viewpoint quality measurement is defined ac-
cording to visibility requirements and aesthetic el-
ements. In addition to the metrics, character fac-
ing, viewing distance, widest aspect, limb visibility,
and static scene occlusion, discussed in the work [4],
we consider user-defined constraints in the viewpoint
quality measurement and improve the estimation of
static scene occlusion. In the work of Assa et al. [4],
the metric of widest aspect is formulated as the an-
gle between the viewpoint angle and the third eigen-
vector, which is determined by principal components
analysis on the positions of pose joints. The results of
this estimation are sufficiently similar to the real size
of the object silhouette, which is suggested as a met-
ric of viewpoint quality by Polonsky et al. [18]. The
metric of limb visibility (or called character visibil-
ity) is calculated by examining the silhouette of each
of the six main body parts (head, torso, two legs, and
two arms) from various locations. The calculation of
this metric can be accelerated by simplifying the main
body parts into a set of fitted ellipsoids. Each ellipsoid
is specified by a specific color; thus, the number of
rendered pixels for each color indicates the visibility
of a body part. Following the viewpoint metrics de-
scribed in [5], the metric of character facing is defined
as the distance between the candidate viewpoint and
the three-quarter view, which is a view preferred by
most people according to the psychophysical experi-
ments [19]. The metric of viewing distance is simply
estimated by the distance between the position of the
candidate camera and the user-defined optimal view-
ing distance. In the estimation of static scene occlu-
sion [4, 5], the animated character must remain visible
to the viewer. However, this simple visibility estima-
tion is not sufficient in illustrating animated charac-
ters. For example, in 1, some unwanted static objects
appear in front (left figure) and at the back (right fig-
ure) of the motion object. Obviously, in terms of the
visibility of the animated character, people prefer the
right figure to the left figure. It is because that people
generally focus on objects in the foreground in a mo-
tion scene. Therefore, in addition to the occlusion fac-
tors suggested by Halper et al. [5] (we refer the reader
to this work for more details about these factors), we
add the foreground factor to this metric. This can be
efficiently achieved by checking if the animated char-
acter lies in front of the obstructions or not. We simply
give a significant penalty in cases where the animated
character lies at the back of obstructions in this met-
ric [5].

Figure 1: Example of static scene occlusion. The ani-
mated character lies at the back (left) and in
front (right) of the obstruction.

Although all possible metrics and pose saliency
suggested by [4] are taken into account in the mea-

surement of the viewpoint and camera path quality, it
is still difficult to satisfy various user requirements.
Therefore, the proposed system allows users to set
constraints on camera parameters in an interactive
manner. Users can set the camera on a specific pose
(frame) and a camera position. Our system can ef-
ficiently generate a camera path responding to this
user requirement. To add and solve these constraints,
a possible solution is adding them as constraints in
the camera path finding problem and solving them us-
ing an optimization approach. However, adding con-
straints in tree traversal significantly increases com-
putational complexity. Thus, we set these constraints
as a metric of viewpoint quality, and integrate them
with other quality metrics for efficient computation.
The metric for user-defined constraint is simply set
as the summation of position and viewing-direction
distances to the user-selected position and its cor-
responding viewing direction. Then, the viewpoint
quality(V Q) is formulated as the linear combination
of these metrics:

VQ(f,p)=wa·Facing(f,p)+wd ·Distance(f,p)+
ww·Widest(f,p)+wv·LimVisibility(f,p)+

wo·Occlusion(f,p)+w f u·UserDef ined(f,p) (1)

where f is the frame index and p is an arbitrary
position. The parameters wa,wd ,ww,wv, and wo are
the weighting factors of character facing, viewing
distance, widest aspect, limb visibility, and static
scene occlusion, respectively. The parameterw f u is
the weighting factor of the user-defined constraint in
frame f . With the aid of these parameters and the
efficient algorithm on camera path finding, users can
tune weightings to meet their requirements in an in-
teractive manner. Note that to evaluate our approach,
as well as for purposes of comparison, we set the pa-
rameter w f u to 0.5 for frames with user-defined con-
straints; the other parameters are set to 0.1 in all ex-
periments. To force the camera path passing through
the user-defined viewpoints, we assign a larger weight
to user-defined constraints. Besides, the weight for
user-defined constraints is applied not only to the
specified frame but also to neighboring frames. The
weights w f u are exponentially decayed over neigh-
boring frames. In this manner, the proposed method
moves the camera gradually to the specified position.

The quality of each viewpoint in the potential space
is calculated by Eq. 1. We can form a viewpoint
quality map in which the value of each point repre-
sents the quality or cost of the camera path planning.
Note that the viewpoint quality map for each individ-
ual metric can be calculated and combined, except for
the metric of user-defined constraints. For these con-
straints, we recalculate the quality maps for frames
with constraints defined interactively by users. Gen-
erally, there are few user-defined constraints; hence,
quality maps are recalculated only in a few frames.
Figure 2 shows some viewpoint quality maps for the
defined metrics.

Figure 2: Viewpoint quality maps for defined met-
rics. Quality is visualized by colors ranging
from yellow (highest quality) to pink (low-
est quality).

4 Camera Path Planning
Once the viewpoint quality map for each frame is gen-
erated, a camera path is subsequently determined us-
ing these maps. In fact, these maps define a very large
spatiotemporal 4D space. To find a camera path in this
space, we first select the best viewpoint (i.e., view-
point with a minimal value in the quality map) for
each frame. If some user-defined constraints are set
in some frames, we recalculate the quality maps and
reselect the best viewpoints for these frames.

In this paper, we propose an efficient two-layer
camera path planning approach. Our approach is de-
signed based on a binary tree structure and a greedy
traversal strategy. We schematically illustrate the
work flow of the proposed approach in Figure 4. The
approach consists of two layers: tree traversal in the
temporal domain (the first layer) and greedy path find-
ing in the spatial domain (the second layer). In the
first layer, a binary tree for a given motion clip is dy-
namically constructed and simultaneously traversed in
the temporal domain. In this binary tree, a node rep-
resents a candidate viewpoint for a frame of motion
clip and each node is determined in the second layer
as well as in the spatial domain. In this tree struc-
ture, an edge represents a possible path from a node
to its descending node, which is also determined in
the second layer. Instead of solving a complex op-
timization problem defined over a high-dimensional
space, we efficiently search a near-optimal path in the
spatiotemporal 4D viewpoint quality map. To speed
up the camera path search, a binary tree on the 4D
quality map space is dynamically constructed and si-
multaneously traversed.

We assume that the camera path from the first frame
to the (i−1)th frame is determined. We want to select
an appropriate viewpoint not only for frame i but also
for the determined camera path. Thus, the naı̈ve ap-
proach of selecting candidate viewpoints from view-
points with local minimal values on the quality map
is inappropriate. To take both the smoothness of the

Figure 3: Optimal viewpoint search. We set some ini-
tial positions on the sphere with the radius of
optimal viewing distance (left) for the steep-
est descent algorithm (right) to find the op-
timal viewpoint.

… …

Layer 1 – tree traversal in temporal domain

Layer 2–Greedy Path finding in spatial domain

1

2 2
3

3

4

4

4

5

5

6

7

7

8

8

8

9

10

4

Motion path
Candidate viewpointSelected Camera path

Selected viewpoint

Skipped candidate pointTracked path

Figure 4: Workflow of the proposed two-layer camera
path planning.

camera path and viewpoint quality into consideration,
we select the candidate viewpoint of frame i from
possible camera paths between the selected viewpoint
of frame (i− 1) (the start of the paths) and the best
viewpoint of frame i (the destination of these possi-
ble paths). In addition, a speed constraint is set on
the candidate viewpoint selection to synchronize the
speeds of the camera and the animated character. To
avoid a dead-end path and for computational simplic-
ity, we only select two candidate camera paths. The
first path can be easily determined by the best-first
search A∗ algorithm that is based on the quality map
of frame i. To ensure that the determined paths and
the selected candidate viewpoints are not too close,
we mark the regions near the candidate viewpoint se-
lected in the first path (the gray viewpoints in Fig-
ure 5). To determine the second path, we adopt the
A∗ least-cost path algorithm again under the constraint
that the path cannot pass through the marked view-
points shown in gray color. Under the speed constraint
(i.e., camera movement cannot pass through the red
curve shown in Figure 5), we heuristically select such
a viewpoint along the found least-cost path with the
maximum camera movement starting from frame (i−
1), thereby approaching the best viewpoint as closely
as possible. For example, in Figure 5, the colors in
the map ranging from pink to yellow represent view-
point quality from low to high. The blue viewpoint is
the current viewpoint and the brown viewpoint is the
best viewpoint of the next frame. Two candidate paths
can be determined according to the quality of the map

and the A∗ algorithm. With the help of the speed con-
straint, the purple and green viewpoints are selected
for these two candidate paths. In our implementation,
the speed limitation is simply set according to char-
acter motion speed, as shown in Figure 6. We first
smooth the motion speed by a Gaussian filter to obtain
smooth camera movement (or avoid abrupt changes in
camera speed) (Figure 6, middle). Subsequently, we
further linearly re-scale the smoothed speed to a nar-
row range with faster speed to take the smoothness
of the camera path into more consideration (Figure 6,
right) and obtain a constraint on maximal speed. The
range is set to [MaxSpeed ∗0.8,MaxSpeed ∗0.5]; the
constant MaxSpeed is the maximum motion speed.
This range means that a faster camera speed is set
as a speed constraint. The rationale behind this re-
scaling is very simple. In Figure 6(left), there is a
significant variation in the moving speed of the hu-
man character. Thus, if our camera follows the human
character movement completely, we cannot have a sta-
ble/smooth camera movement. Therefore, we smooth
this speed and then re-scale it to yield a stable camera
movement.

Figure 5: Illustration of candidate viewpoint selection
in the spatial domain.

Figure 6: Camera speed constraint. The motion speed
(left) is first smoothed (middle) and then lin-
early re-scaled to a desired range (right).

The proposed tree traversal algorithm (i.e., camera
path determination) is described below with a pseudo-
code. The candidate viewpoints obtained from the
second layer are the children nodes of the current
node, denoted as nodec in the pseudo-code. By a

greedy strategy, the binary tree is dynamically grown
(or constructed) and traversed in two steps: (1) we ex-
tract the candidate viewpoint, denoted as nodem, from
the set of candidate viewpoints, denoted as V ; and
(2) we determine two new candidate viewpoints for
the node selected in the first step using the function
NewCandidate(), and add these two candidate view-
points to set V . These two steps are iteratively per-
formed until set V becomes empty or the last frame
of the clip is reached. To avoid passing through low-
quality viewpoints, we set a quality constraint on the
selected viewpoint nodem. This quality constraint
is performed by the function TV Q(nodem) in the
pseudo-code. If the summation of the viewpoint qual-
ity of the nodes within the window located at nodem
(the window size is 30 nodes in our experiment) is
lower than a defined threshold (i.e., TV Q(nodem) >
qthr), we back-trace to its parent and even to its an-
cestor nodes until the quality criterion is satisfied.
However, to take efficiency into account and avoid
too many back-tracings, we limit the process of back-
tracing by checking if the path distance between the
current node and the selected candidate is less than
or equal to a defined threshold dthr using the function
Distance(). In Figure 7, for example, the red node in
the 4th step is an unqualified viewpoint. Therefore,
we back-trace to its ancestor nodes to find a quali-
fied node. In this case, the qualified node appears in
the grandparent node. Note that in our implementa-
tion, the threshold qthr is automatically decreased and
the threshold dthr is increased when a dead-end path
is met. In addition, To reduce the distortion artifacts
known as aliasing when representing a quality map
by a lower resolution grid, we perform a smoothing
operation with a small Gaussian kernel on the deter-
mined viewpoints and viewing directions during the
tree traversal.

Figure 7: Illustration of our greedy binary tree traver-
sal. The red node is the best viewpoint and
also the target in that step. The blue nodes
are the traversed nodes.

5 Cinematographic Techniques
Some cinematographic techniques, such as multi-
camera, slow motion and multi-view replay tech-
niques, are easily realized through our proposed
scheme. The integration of these techniques into our
scheme is described in this section.
5.1 Multi-camera technique
The multi-camera technique is necessary when char-
acter motions are fast and changeful. Because of the
speed constraint, it is difficult to sufficiently capture

the characteristic features of motions from a camera
path. Therefore, we implement the effect of the multi-
camera technique to split the camera path into multi-
paths in our system. This is achieved by simply se-
lecting the best viewpoint when the viewing direction
of the selected viewpoint is much different from the
viewing direction of the best viewpoint. In the imple-
mentation, we check the angle between the viewing
directions of the best viewpoint and the selected view-
point. If the angle is larger than a defined threshold,
the selected viewpoint is simply replaced by the best
viewpoint, and the camera position changes/jumps
from the selected viewpoint to the best viewpoint to
imitate the effect of a camera cut.

5.2 Slow motion and multi-view replay
techniques

The cinematographic effects of slow motion and
multi-view replay are frequently used in professional
games, such as a shot in soccer and a slam dunk in
basketball. In our system, users can add these ef-
fects on a selected short clip. Our system generates
multi-paths for this clip to enhance its characteristic
features. Following the rules in cinematography, two
or three action rebroadcasts are appropriate for impor-
tant actions. Therefore, our system generates three
different paths for the selected action. In addition to
the generated camera path, we select two other camera
paths: the three-quarter views calculated by the met-
ric of character facing, and the widest aspect views
calculated by the metric of widest aspect. The path
of the three-quarter view can clearly show the front of
the character and its action. The path of the widest as-
pect view can show the characteristic features of this
action.

6 Experimental Results and
Discussion

The experimental results were evaluated on an Intel
Core i7 860 PC (4G memory, using single core). The
thresholds used in the camera planning algorithm are
identical in all experiments. The results of the cam-
era path planning are shown in Figures 11. From
the viewpoints of key-frames (see the images at the
side) and the generated camera path, our approach can
generate smooth and informative camera paths. For
clearly evaluating the generated camera path, we refer
the reader to the supplementary video. The time per-
formance is shown in Table 1. For a clip with about
1,000 frames, our system usually takes less than 5 sec-
onds (including the calculation of best viewpoints) to
generate a camera path.

We evaluated the camera planning results using two
measurements. The first measurement, the standard
deviation of the camera speed (Edev), can estimate the
smoothness of the camera moving speed.

Edev =
√

1
N−1 ∑

N
f =2 (s f − s)2 (2)

where s f = path[f]− path[f −1] and s̄ is the average
camera speed. The second measurement, the standard

Table 1: Time performance. 1st column: datasets; 2nd

column: the number of frames in the data
set (#Frame); 3rd column: execution time for
best viewpoint determination (VP); 4th col-
umn: execution time for camera path plan-
ning (CPP);

Dataset frame VP CPP Total(]) (sec.) (sec.) (sec.)
Example 1 625 0.29 1.15 1.44

+ User defined 660 0.28 4.16 4.44
+ SceneOcc 645 0.48 2.97 3.45
Example 2 646 0.35 0.73 1.08
Example 3 1005 0.64 1.11 1.75
Example 4 1069 0.50 5.18 5.68

deviation of the camera viewing direction (Edirection),
can estimate the smoothness of the viewing direction.

Edirection = 1
N ∑

N
f =1 |v(f)− v(f −1)| (3)

where v(f) is the viewing direction of the viewpoint
of frame f . We compare the generated camera paths
not only with the most related approaches [4, 5] but
also with the paths made by professional animators.
The statistical results are shown in Table 2. The
smoothness of camera position and viewing direction
(i.e., Edev and Edirection) in our approach are superior
compared to those of related approaches, except for
Edirection in the case of the paths made by professional
animators. This is because animators pay much more
attention to the smoothness of viewing direction than
to camera position. As for the camera path quality,
we refer the readers to the accompaniment video for
visual evaluation.
Table 2: Statistical comparison between our approach

and the related approaches.
Edev Edirection

Our approach 0.961 3.437
Animators 1.599 3.363
[5] 10.039 9.892
[4] 2.569 3.436

In Figure 8, we demonstrate the advantage of the
proposed approach on scene occlusion. If a static ob-
ject is added to the scene, the visual quality of the
motion character is greatly affected in some frames
when we ignore the occlusion of the static object or
when we use the approaches suggested by [4, 5] (mid-
dle figure). In contrast, considering the foreground in
the metric of static scene occlusion, our approach can
greatly improve the visual quality (right figure).

We experimented on the metric of user-defined con-
straints and test if our approach can satisfy user re-
quirements. The results are shown in Figure 9. The
left top figure is the user-desired viewpoint, a side
view of the character. If the user-defined constraints
are not included in the measurement of viewpoint
quality, the generated viewpoint in this frame is a
frontal view, as shown in Figure 9(a), not satisfying

Figure 8: Scene occlusion. A camera path generated
without the metric of scene occlusion (up),
and a camera path generated with the metric
of scene occlusion (down).

the user requirement. In contrast, with the aid of this
metric, the proposed approach can satisfy the user re-
quirement, as shown in Figure 9(b). To strengthen

Figure 9: Demonstration of user-defined constraints.
The camera path without (a) and with (b)
the user-defined constraint, that is, the user-
desired viewpoint as shown in the top left.
The viewpoint and viewing direction of the
viewpoint shown at the bottom are the red
dot and the red arrow shown at the top.

further the comparison of our approach and related
approaches, we conducted a user study involving 30
computer graphics students and researchers aged 24
to 40 years. Participants were required to grade some
video clips showing the same animation by different
camera control approaches. Participants were blind
to the study objectives and the tested video clips were
given at random. Participants were asked to grade two
problems: (a) how well each clip describes the charac-
ter action, and (b) how professional the camera control
looks. A score may range from 0 to 4, where 4 rep-
resents the best quality. The results of the user study,

as shown in Figure 10, indicate that our approach is
better than [5]. Moreover, our results are comparable
to those of the optimal approach [4] and the work of
professional animators.

0

1

2

3

4

5

Ex1 Ex2 Ex3 Ex4

Ex1 Ex2 Ex3 Ex4
■■ Our approach 3.6/3.4 3.7/3.6 3.3/3.2 3.5/3.5
■■ [HHS01] 3.1/2.6 3.1/2.5 3.0/2.3 3.3/2.8
■■ [ACYL08] 3.7/3.8 3.5/3.3 3.3/3.5 3.5/3.3
■■ Animator 3.6/3.7 4.0/3.8 3.5/3.6 3.1/3.3

Figure 10: User study results. The dark colors and
bold numbers are the scores for problem
(a), and the light colors and non-bold num-
bers are the scores for problem (b).

7 Conclusions and Future Work
An automatic and efficient camera path planning ap-
proach was introduced. The optimal searching ap-
proach defined over a high-dimensional space is re-
duced to a simple tree-traversal problem defined over
a double-layer binary tree structure. In addition, a
more elaborate visibility descriptor on scene occlu-
sion is proposed, and user-defined constraints are in-
tegrated in the measurement of viewpoint quality. Our
approach is capable of integrating many potential vi-
sual metrics to select high-quality viewpoints while
efficiently obtaining not only near-optimal but also
smooth camera paths. The balancing of the best
viewpoints and frame coherence can be efficiently
achieved in our scheme. Experimental results show
that our approach can generate smooth and informa-
tive camera paths to reveal successfully the signif-
icant motion features of characters. The results of
our user study also show that the generated camera
paths are comparable to optimal results generated by
state-of-the-art approaches and by professional ani-
mators. Moreover, the computational cost or the in-
teractive time of our approach is much lower than that
of optimal-based approaches and professional anima-
tors. In the near future, we plan to improve the ef-
ficiency of our scheme on the computation of static
scene occlusion, which is the bottleneck of viewpoint
measurement, by GPU computing. Moreover, we plan
to extend viewpoint quality measurement from evalu-
ating single-character motions to multi-character mo-
tions.

References
[1] Li-wei He, Michael F. Cohen, and David H.

Salesin. The virtual cinematographer: a
paradigm for automatic real-time camera control
and directing. SIGGRAPH ’96, pages 217–224,
1996.

[2] Michela Mortara and Michela Spagnuolo. Tech-
nical section: Semantics-driven best view of 3d
shapes. Comput. Graph., 33:280–290, 2009.

[3] Marc Christie, Rumesh Machap, Jean marie
Norm, Patrick Olivier, and Jonathan Pickering.
Virtual camera planning: A survey. In In Pro-
ceedings Smart Graphics, pages 40–52, 2005.

[4] Jackie Assa, Daniel Cohen-Or, I-Cheng Yeh,
and Tong-Yee Lee. Motion overview of human
actions. ACM Trans. Graph., 27:115:1–115:10,
2008.

[5] Nicolas Halper, Ralf Helbing, and Thomas
Strothotte. A camera engine for computer
games: Managing the trade-off between con-
straint satisfaction and frame coherence. In Eu-
rographics 2001, volume 20(3), pages 174–183,
2001.

[6] Marc Christie and Patrick Olivier. Camera con-
trol in computer graphics. In Eurographics 2006
State of the Art Reports, pages 89–113, 2006.

[7] Steven M. Drucker and David Zeltzer. Cam-
droid: A system for implementing intelligent
camera control. In In 1995 Symposium on In-
teractive 3D Graphics, pages 139–144, 1995.

[8] Thainimit S. Bares, W. H. and S. McDermott. A
model for constraint-based camera planning. In
AAAI 2000 Spring Symposium on Smart Graph-
ics, pages 84–91, 2000.

[9] Nick Halper and Patrick Olivier. Camplan: A
camera planning agent. In AAAI 2000 Spring
Symposium on Smart Graphics, pages 92–100,
2000.

[10] Frank Jardillier and Eric Languénou. Screen-
space constraints for camera movements: the
virtual cameraman. Computer Graphics Forum,
17(3):175–186, 1998.

[11] Frédéric Benhamou, Frédéric Goualard, Éric
Languénou, and Marc Christie. Interval con-
straint solving for camera control and motion
planning. ACM Trans. Comput. Logic, 5:732–
767, 2004.

[12] Ting-Chieh Lin, Zen-Chung Shih, and Yu-Ting
Tsai. Cinematic camera control in 3d computer
games. In WSCG, pages 289–296, 2004.

[13] B. Apolloni, C. Carvalho, and D. de Falco.
Quantum stochastic optimization. Stochastic
Processes and their Applications, 33(2):233–
244, 1989.

[14] Jonathan H Pickering. Intelligent Camera Plan-
ning for Computer Graphics. PhD thesis, Uni-
versity of York, 2002.

[15] J.-Y Kwon and I.-K Lee. Detemination of cam-
era parameters for character motions using mo-
tion area. The Visual Computer, 24:475–483,
2008.

[16] Jackie Assa, Lior Wolf, and Daniel Cohen-Or.
The virtual director: a correlation-based online
viewing of human motion. Comput. Graph. Fo-
rum, 29(2):595–604, 2010.

[17] Patrick Olivier, Jon Pickering, Nicolas Halper,
and Pamela Luna. Visual composition as optimi-

sation. In AISB Workshop on AI and Creativity
in Entertainment and Visual Art, pages 22–30,
1999.

[18] Oleg Polonsky, Giuseppe Patanè, Silvia Biasotti,
Craig Gotsman, and Michela Spagnuolo. What’s
in an image: Towards the computation of the
”best” view of an object. The Visual Computer,
21(8-10):840–847, 2005.

[19] Volker Blanz, Michael J. Tarr, and Heinrich H.
Bülthoff. What object attributes determine
canonical views. Perception, 28(5):575–600,
1999.

Algorithm 1 (Layer 1): Camera Path Determination
V ← /0 {The stack of candidate viewpoints}
V ←V

⋃
nodes {nodes is the root node of binary tree(i.e., the best viewpoint of the first frame)}

nodec← nodes {set nodes to be the current node which is denoted as nodec}
repeat

nodem← POP(V) {step1: extract and remove the top node from V}
if TV Q(nodem) >q thr and Distance(nodem,nodec)≤ d thr then
{check if the summation of viewpoint quality of nodes within the window located at nodem is great than
the defined threshold q thr, and the path distance between nodem and nodec is less than and equal to
d thr}
nodec← nodem {set nodem as the current node}
nodea,nodeb← NewCandidate(nodec) {where V Q(nodea) > V Q(nodeb)}
{step 2: select the new candidate viewpoints in Layer 2 and add them to V}
PUSH(V,nodeb) {push nodeb to V}
PUSH(V,nodea) {push nodea to V}

end if
until V is empty or reach the last frame in the clip

Figure 11: Results of the camera path planning (Example 1-4). Some viewpoints of the key-frames are shown at
the side.

