IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO.6, NOVEMBER/DECEMBER 2004 1

Metamorphosis of 3D Polyhedral Models Using
Progressive Connectivity Transformations

Chao-Hung Lin and Tong-Yee Lee, Member, IEEE

Abstract—Three-dimensional metamorphosis is a powerful technique to produce a 3D shape transformation between two or more
existing models. In this paper, we propose a novel 3D morphing technique that avoids creating a merged embedding that contains the
faces, edges, and vertices of two given embeddings. This novel 3D morphing technique dynamically adds or removes vertices to
gradually transform the connectivity of 3D polyhedrons from a source model into a target model and simultaneously creates the
intermediate shapes. In addition, a priority control function provides the animators with control of arising or dissolving of input models’
features in a morphing sequence. This is a useful tool to control a morphing sequence more easily and flexibly. Several examples of
aesthetically pleasing morphs are demonstrated using the proposed method.

Index Terms—Metamorphosis, connectivity fransformation, embedding, scheduling.

1 INTRODUCTION

THREE-DIMENSIONAL metamorphosis is a powerful techni-
que in entertainment and computer animation. This
technique can generate a smooth shape transformation
sequence from a source object into a target object. There are
two major categories of 3D morphing techniques: a volume-
based approach and a surface-based approach [1], [2]. The
volume-based approach represents a 3D object as a set of
voxels. Lerios et al. [3] propose a 3D morphing method
using fields of influence of 3D primitives such as points and
lines to warp volumes. Cohen-Or et al. [4] propose a
distance field metamorphosis scheme. The distance field
interpolation is guided using a warping function. In
contrast to the surface-based approach, the volume-based
approach can support genus changing well. However, the
volume-based approach is usually very computationally
expensive.

Generally, most surface-based approach techniques
consist of two main steps [5], [6], [7], [8], [9], [10], [12]:
1) one-to-one correspondence establishment and 2) inter-
polation path finding for intermediate shapes. A common
approach to establish a correspondence between two given
models is to generate a common connectivity for both the
source and target meshes. Common embedding is a well-
known way to find a common connectivity. This is
generally accomplished in three steps: decomposing the
models into several corresponding patches, embedding the
corresponding patches onto a 2D parametric domain, and
merging the corresponding embeddings to form a common
interpolation mesh. Embedding merging is an overlay
problem and several optimal algorithms are known in
computational geometry, such as [13]. Alexa [7] and Lee

o The authors are with the Computer Graphics Group/Visual System Lab.,
Department of Computer Science and Information Engineering, National
Cheng Kung University, Taiwan, ROC.

E-mail: jendon@csie.ncku.edu.tw, tonylee@mail ncku.edu.tw.

Manuscript received 26 June 2003; revised 5 Jan. 2004; accepted 22 Jan. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tveg@computer.org, and reference IEEECS Log Number TVCG-0050-0603.

1077-2626/04/$20.00 © 2004 IEEE

and Hung [8] also propose optimal overlay algorithms to
handle 3D morphing applications.

The main drawback of embedding merging is that it
usually produces many times as many triangles and
vertices as the input models [5], [6], [7], [8], [9], [10], [12].
In this paper, the major contribution is a novel technique to
solve this drawback. This technique uses three primitive
operations, called the vertex removal operation (VRO),
vertex split operation (VSO), and edge swap operation
(ESO), to dynamically add or remove vertices in a morphing
sequence. This approach gradually changes the connectivity
from the source object into the target object and simulta-
neously generates a smooth morphing sequence using
linear interpolation. In addition, a priority control function
is designed to provide animators with easy and flexible
control over a morphing sequence.

The rest of this paper is organized as follows: Section 2
reviews the related work about 3D polyhedral metamor-
phosis. The proposed techniques are presented in Section 3.
The proposed approaches are evaluated and the experi-
mental results are presented in Section 4. The conclusion
and future work are given in Section 5.

2 RELATED WORKS

Our work is a surface-based approach and it focuses on
morphs between two 2-manifold 3D polyhedrons. In this
section, the most related works are surveyed. For other
interesting works, see two excellent survey papers [1], [2].
Most surface-based works use a merging strategy to obtain
the input model correspondences [5], [6], [7], [8], [9], [10],
[11], [12], [14]. Kanai et al. [9] use harmonic mapping and
embedding-merging to establish vertex correspondence for
corresponding meshes. Kanai et al. [10] further describe a
user-specified method to partition meshes into submeshes
and then use a similar scheme [9] to establish submesh
correspondence. Gregory et al. [5] present a similar user-
specified control mesh method to partition meshes. The
surface correspondence between each submesh of two

Published by the IEEE Computer Society



2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO.6, NOVEMBER/DECEMBER 2004

objects is then established using a greedy area-preserving
mapping. Several works use feature alignments to build
better correspondence before embedding merging [6], [7],
[8]. In Zockler et al.’s work [6], correspondence patches can
be disk-like or cylinder-like topology. Alexa [7] embeds
polyhedral models onto unit spheres. Lee and Hung [8]
describe a minimal contour coverage structure to assist the
embedding overlay. Manually partitioning models [5], [6],
[8], [9], [10] is not an easy task for animators. Shlafman et al.
[12] propose a clustering method to automatically decom-
pose models into meaningful patches. However, this
approach cannot guarantee suitable corresponding patches
generation. Lee et al. [11] specify vertex pairs on two
original meshes and employ a multiresolution parameter-
ization algorithm to generate coarse models. The coarse
models are then merged to establish correspondence with
the assistance of a harmonic map. This approach could have
a fold-over problem and user interaction is required to
manually fix this problem. Once correspondence is estab-
lished, linear interpolation is frequently used in morphing
because of its simplicity. However, this simple method can
cause self-intersection and shape degeneration. To avoid
these problems, Alexa et al. [14] present an “as-rigid-as-
possible” method to transform both the boundaries and
interiors of meshes. However, in 3D examples, the source
and target meshes are tetrahedralized and merged. The
overlay of two tetrahedralizations is more complicated than
the mesh overlay approach. Without model merging,
Michikawa et al. [15] and Praun et al. [16] propose
multiresolution remeshing techniques to establish the
common mesh connectivity for morphing. However, multi-
resolution remeshing techniques require a great number of
refinement levels to achieve the desired accuracy (in
particular for sharp features) for input meshes. Therefore,
a tremendous number of triangles are always produced.

Both model merging and multiresolution remeshing
schemes have the similar problem of producing an
interpolation common connectivity of tremendous size.
From the application point of view, we may apply adaptive
refinements or LOD techniques to reduce the size. How-
ever, this may be not an elegant approach to solving this
problem. Alternatively, without a common connectivity, the
proposed technique gradually transforms the connectivity
from the source mesh into the target mesh using VSO, VRO,
and ESO operations. The intermediate mesh connectivity
changes and is much less complicated than previous
approaches. Similar to the proposed scheme, recently,
Ahn and Lee [17] use vertex matching and edge swap,
etc. to perform morphing. However, for two given models
M, and M,;, this approach completes M, — M; (ie., —
denotes the connectivity transformations) using the follow-
ing sequence: M; — M!, M., — M|, and then M — M,
where M/ and M are simplified meshes of M, and M,. This
long transformation sequence is not very elegant and is
unnecessary. Our approach directly transforms the source
mesh into the target, bypassing the process of going
through simpler meshes. In addition, the quality of the
examples presented in [17] is not good. This might be due to
poor edge operations scheduling or not considering the
fold-over problem.

3 METHODOLOGY

3.1 Overview

The overall system structure of the proposed approach is
similar to our previous work [8]. First, the animators select
several corresponding vertex pairs on both input polyhe-
drons to define a corresponding patch pair. The input
polyhedral models are automatically partitioned into
several corresponding patches using a modified shortest
path algorithm to avoid path boundary crossing [8]. Second,
each corresponding patch is then embedded on a 2D disk.
Third, the animators select extra features to align the
features within the corresponding embeddings using a
warping function. Most surface-based approaches consist of
these three steps that are very similar and well-known in
morphing literature. For more details about our implemen-
tations of these three steps, please see [8]. Without
embedding merging, we use a novel technique that
generates morphs using progressive connectivity transfor-
mations. The core of the proposed technique is described in
detail in Section 3.3.

3.2 Matching Feature Points within Corresponding
Embeddings

A radial-based function is used to align features within
corresponding embeddings [8]. However, sometimes a fold-
over, i.e., edge self-intersection, could occur due to a
deformation of embedding from this warping function. In
[8], we suggest simply iterating a few relaxations to solve this
problem. However, features are not guaranteed to be aligned
using this simple approach. For better alignment, our
improvement is described as follows: Once the fold-over is
found, the two corresponding patches are partitioned into
subpatches. The subpatches are embedded and warped until
fold-over-free subembeddings are found. Intuitively, a
partition path (i.e., line) on the embedding can be obtained
by directly connecting the embedding center and one of the
extra feature points. This path is selected to divide the extra
feature points into two sets. Although this path is found on
the 2D embedding, its corresponding 3D path can be easily
found using the barycentric method. A similar idea of
partitioning a patch into two patches with a line in the
embedding has been proposed by Alliez et al. [18]. Note that
the partition path may cross some fold-over triangles on the
embedding. An incorrect path could be generated if this path
is found by simply linking all triangle intersections with this
partition line. To avoid an incorrect path, the selected
partition path must be a continuous path in which adjacent
vertices are on the same or neighboring triangles. Fig. 1
shows a repartition example. There are three extra feature
points in both embeddings and the partition path passes
through a feature point, as shown in Fig. 1b. This path can
partition the patches into two pairs of corresponding
subpatches, as shown in Fig. la and Fig. 1lc. These
subpatches are then reembedded into the 2D parametric
plane again and finally warped to build a correspondence
between them, as shown in Fig. 1d and Fig. le. Because no
additional fold-over is found, the task is done.

In our practice, the above simple approach works well
for scattered features. If very dense features are required,
the fold-over-free warping becomes a difficult problem. To



LIN AND LEE: METAMORPHOSIS OF 3D POLYHEDRAL MODELS USING PROGRESSIVE CONNECTIVITY TRANSFORMATIONS 3

()

@ : Extra feature point
: Partition path

(a) (b) (©) (d) ()

Fig. 1. (a) A pair of corresponding patch (a hoof of pig and a hoof of
cow), (b) the embeddings of (a), (c) repartition (a) into two subpatches
(shown in different colors) by a partition path defined in (b), (d) the
embeddings of left subpatches (blue color), (e) the embeddings of right
subpatches (pink color), (f) some fold-over in (b). Note that a partition
path line on the embedding may correspond to a curve path in 3D
asshown in (b) and (c).

alleviate this problem, the user is asked to manually
partition more patches to keep a smaller number of features
on each embedding. For the better approaches, two
excellent works [19], [20] in texture mapping allowing
dense feature constraints can be used to solve this problem.

3.3 Morphing with Connectivity Transformations
3.3.1 Progressive Connectivity Transformations

A mesh M is described by a pair (K,V), where K is a
simplicial complex representing the connectivity of vertices,
edges, and faces; V describes the geometric positions of the
vertices in R?. In the general setting of 3D morphing, two
meshes, M° = (Ko, Vo) and MT = (K, V), are given. In the
literature, a common method generates a sequence of
intermediate meshes M(t) = (K,V(t)), t€[0,1], where
parameter t is the morphing time. The geometric connec-
tivity K and the number of vertices ||V (t)| are the same
among each intermediate mesh [5], [6], [7], [8], [9], [10], [12],
[15], [16]. The proposed method generates intermediate
meshes M(t) = (K(t),V(t)), t € [0,1], where the geometric
connectivity K(¢) and the number of vertices |V(¢)|| are
different among each intermediate mesh.

Given any two 2-manifold meshes M* and M7 with the
same genus, Hoppe et al. [21], [22] prove that M* can be
transformed into M7 using a finite sequence of edge splits,
edge collapses, and edge swaps. In their proof, M~ can be
transformed into M°', which is isomorphic to MT, using a
finite sequence of edge collapses and edge splits, where M~
is a subdivision of M and M is a subdivision of M.
Similarly, M”" can be transformed into M’ using a finite
sequence of edge splits and edge collapses. Although their
original idea is used for mesh optimization, this proof gives
us theoretical support for the correctness of our proposed
algorithm. However, for 3D morphing, it is not practical to
perform such a long sequence of edge splits and edge
collapses to transform the connectivity of the source mesh
into that of the target mesh. Alternatively, we gradually
transform the mesh connectivity using a finite and suitable
sequence of three primitive operations called VRO, VSO,
and ESO, as shown in Fig. 2. Furthermore, maintaining a
one-to-one and onto mapping function between the inter-
mediate and input meshes is indispensable for 3D morph-
ing. Any operation performed on an embedding must not
produce incorrect fold-over triangles. The proposed method

p; Pi
—
P pz/%ﬁm\Pk
p; P
(b)
b pi
R ——
Px ' Pr
p;

(©) (d)

Fig. 2. The primitive operations; (a), (b): vertex split operation; (c): vertex
removal operation; (d): edge swap operation.

employs VSO, VRO, and ESO to transform connectivity.
Alternatively, if we employ edge collapse (ECO) instead of
VRO, we will schedule ECO instead of VRO in the proposed
method. In such an alternative, for example, if we schedule
performing ECO on the green edge in Fig. 3a, a fold-over is
created. In other words, some ECO cannot be executed at
any morphing time. This is a restriction on the connectivity
transform. Therefore, we employ VRO instead of ECO.
For the ith corresponding embedding pair H? and HY
from M*® and M7, the VRO operations are performed to
remove all vertices on the source embedding H? and the
VSO and ESO operations are performed to insert all target
embedding vertices and edges into the source embedding
H?, respectively. After executing all of the operations
mentioned above, the connectivity of the source embedding
H? can be transformed into that of the target embedding
HT. The edge-insertion plays a critical role in the con-
nectivity transformation. In the literature, inserting an edge
into an embedding is a well-known problem in the
computational geometry of constructing constrained De-
launay triangulations. Shewchuk [23] shows that an edge
can be inserted into an embedding using a sequence of valid
ESOs. A valid ESO will not cause a fold-over, as shown in
Fig. 3b. This edge is called a valid edge. Any edge (v, vn)
from a target embedding can be successfully inserted into a
source embedding if the vertices v, and v, both exist in the
source and target embeddings. This insertion will not cause
any fold-over. Before creating an edge (v, v,), we perform
VSOs to insert vertices v,, and v, if these two vertices are not
on the source embedding. On the other hand, a source vertex
or edge may be lying on an inserted target edge. To handle
this case, edge insertion and vertex removal are required.

mvahd edge invalid edge E ;
collapse(==) collapse(=)
mvahd edge

Swap(==)

Fig. 3. (a) An edge collapse on green edge creates fold-over; (b) an
invalid case of edge swap.




4
Vertex Matching VSO(®@) ESO)
Source Embeddmg (5)VRO(A)

A :Source Vertex
@ :Target Vertex

W :Matched Vertex
— :Matched Edge

VSO() VROQ, ESOQ)

Target Embedding

Fig. 4. A flowchart showing a progressive connectivity transformation
from a source embedding into a target embedding using three primitive
operations.

Therefore, after removing a source vertex lying on an inserted
targetedge, this inserted edge can still be successfully created
using a finite sequence of valid edge swaps.

3.3.2 Scheduling Connectivity Transformations

Fig. 4 shows an overview of a progressive connectivity
transformation from a source embedding into a target
embedding using three primitive operations. In Step (1), the
two corresponding embeddings are overlapped. In Step (2),
rough vertex matching is used to decrease the number of
times VRO and VSO are executed. The algorithm efficiency
is therefore increased. Except for the matched vertices, the
unmatched vertices of source embedding and target
embedding are used to execute the VRO and VSO
operations, respectively. These two operations are illu-
strated in Steps (3) and (5). Once VSO is performed, a vertex
is inserted on the source embedding. This vertex then
becomes a matched vertex. The VSO operation might
produces the narrow triangle; thus, local refinement is
performed for a narrow triangle in Step (4). The target
embedding vertices must be inserted to raise the target
embedding features. The edges of the target embedding
must also be created, as shown in Step (6). Similarly, once a
new edge is created, this edge becomes a matched edge. By
iterating Steps (3)-(6), a sequence of primitive operations is
performed, as shown in Step (7), to transform the source
embedding into the target embedding. In our proposed
technique, an important task is scheduling a suitable
operation sequence for each frame. The goal of this
scheduling is to produce a smooth morphing sequence.
Therefore, a priority must be designed for each vertex and
each edge of both input embeddings. This priority
determines the execution orders for these operations.

The Progressive_Connectivity_Transformations() procedure
shows the entire processes for the proposed technique. For
each corresponding embedding pair, rough vertex match-
ing is performed in the VertexMatching() procedure. If the
position of vertex v? in embedding H? (t=0) and the
position of vertex v in embedding H; (t = 0) are closest to
one another and if embedding H? (t = 0) is fold-over-free
after assigning the position of v to that of v1, we can then
say that they are matched and let v? and
vl .match = v} Although this will cause a small error, it is
meaningless for a position in H? (¢t = 0) to exactly match
the same position in H! (¢t = 0) after a 3D-to-2D distorted
embedding function. In addition, in the following pseudo-
code, each H? is changing as t varies but H! does not. Our

.match = vT

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO.6, NOVEMBER/DECEMBER 2004

implementations gradually modify the source embeddings
to obtain morphs.The next procedure is PriorityCalculation(),
which calculates a priority for each vertex and each edge in
both embeddings. The features of both input objects must
be preserved and gradually transformed in a morphing
sequence; a simple metric for vertex priority is defined as
the vertex’s mean curvature multiplies using the face areas
that surround the vertex. The metric for edge is defined as
normal vector variations of the neighbor faces of this edge
multiplied by the areas of these faces. The priority p, of
vertex and the priority p. of edges can be written as the
following equations:

po(v;) = curture(v;) * area( f;), (1)

2
fi€l—ring(v;)
pe(ei) = [[n1 — nao| * (area(f1) + area(f2)), (2)

where ny, ny are the normal vectors of the neighbor faces f,
fo of edge e;.

IAlgorithm Progressive_Connectivity_Transformations (M *, M T )

VertexMatching();
PriorityCalculation();
/*Calculate the priority of each vertex and each edge */
For t <~ 0to1{
For each correspondence embedding pair ( 1—[ @), H )
For each v, € H (t)
Iy, priority <t andv, match= false (i.e.,-1)
VRO(v, 2 /* Vertex removal operation*/
For eachv eH, )
Ify, prlorzty <tandy, match= false

VSO(v,):
/* Vertex split operation: add  vertes
from 7 (r)onto H S (1) */

FirstPassEdgeSwap();

/*Arise target’s feature edges and dissolve source’s featurg
edges by edge swap operations on embeddings */
}
Interpolation( M(¢));
/*Generate the intermediate mesh M(¢) using
interpolation according to all (f1°(¢), H] (¢)) pairs*/
SecondPassEdgeSwap( M(t));
/*Refine the intermediate mesh M (¢) */
Output( M(t)); }/*Output the intermediate mesh M (¢) */

linean

In the Progressive_Connectivity_Transformations() proce-
dure, the VRO() and VSO() procedures are performed first
and then the FirstPassEdgeSwap() and SecondPassEdgeSwap()
procedures are performed later. This means that the
priorities for vertices are larger than the priorities for edges.
Therefore, if a vertex is removed, the adjacent edges are also
removed. In source and target embeddings, we can have
four priorities pS, p?, pI, and p! for each vertex and edge.
Note that the priorities p?, p!" determine the VRO execution
order for vertices in the source embedding and the VSO
execution order for Vertices in the target embedding,
respectively. The priority p! determines the edge creation
order in the target embedding. The priority p® determines the
edge dissolving order in the source embedding. Here, edge
dissolving means that the edge is removed using VRO or ESO
operations. To schedule these operations, a simple method
we adopt involves relating the execution orders of these
operations to the frame time. These priorities are sorted and



LIN AND LEE: METAMORPHOSIS OF 3D POLYHEDRAL MODELS USING PROGRESSIVE CONNECTIVITY TRANSFORMATIONS 5

then normalized. Therefore, the range of the frame time and
the priorities are the same, i.e., the value is between 0 and 1.
We set v;.priority = p,(v;) and e;.priority = p.(e;) for each
vertex and each edge in both embeddings. Here, the sorting
order for p?, p? is from small to large and the sorting order
for p!, p! is from large to small. To maintain the features in
a morphing sequence, the features in the source embedding
have higher preservation priorities and the features in the
target embedding have higher creation priorities.

From the above descriptions, the priorities for vertices
and edges are not synchronized, i.e., assigned and used
independently. With this arrangement, different control
functions can be designed to modify vertex and edge
priorities. In this manner, more flexibility is provided for
animators to control morphing sequences. These control
functions are described in Section 3.5. If synchronization
between vertices and edges is required, it can be achieved
simply as follows: After calculating the vertex priorities,
each edge priority is assigned according to the priorities of
the edge’s two end-vertices. Therefore, both vertices and
edges can be handled at the same time, t. The VRO, VRSO,
and ESO operations are described in the following.

Vertex split operation (VSO). This operation has two
cases, as shown in Fig. 2a and Fig. 2b. The first case, an
addition vertex p,,, lies in the interior of the triangle
Apipjpi. Edges are added from p,, to the vertices of this
triangle. The second case is that p,, falls on an edge. Edges
are added from p,, to vertices p; and p;. The 3D position of
the inserted vertex p,, is computed using the barycentric
method from the embedding. The priorities of these
additional edges are set to zero, i.e., the lowest priority,
because these edges do not belong to the input meshes.
Therefore, these edges can be modified for local refinement
purposes. This operation could produce a narrow triangle.
Therefore, ESO is performed to locally refine this narrow
triangle. In practice, an edge is swapped between two
triangles if ESO improves the triangle aspect ratio of these
two triangles. The criterion for this aspect ratio is defined as
area/perimeter? and it is computed in 3D.

Vertex removal operation (VRO). We remove a vertex
and then retriangulate the hole that is left by this vertex and
its neighbor triangles. Fig. 2c shows an example. In the
implementation, a triangulation method [24] is employed to
fill the hole. However, there are many possible triangula-
tions for a given hole. The triangulation that yields the least
distance distortion in 3D is chosen. We use a greedy
approach to check all interior edges of triangulation. Given
an edge, if an edge swap can cause reduction in distortion
in 3D, we execute ESO on this edge.

Edge swap operation (ESO). Consider an edge p;p; in an
embedding, as illustrated in Fig. 2d. This edge is adjacent to
two triangles Ap;p;p; and Ap;p;py. If these two triangles
form a convex quadrangle, p;p; is a valid edge. We can
obtain a new embedding by removing edge p;p; and then
inserting edge pipy, instead.

In the Progressive_Connectivity_Transformations() proce-
dure, the edge swap is executed at two other places. The
first place is used to make the target edges emerge using a
sequence of ESOs. This is described in the pseudocode
FirstPassEdgeSwap(). If edge e; € H' is unmatched and its

priority is equal or less than the frame time, then this edge
is inserted into the current embedding. The existence of a
sequence of ESOs to insert a nonexistent edge was proven
in [23], [25]. However, there is a contradiction in this
procedure. If an operation ESO (e;) (i.e., e; € H®) belongs to
this sequence, but the priority of edge e; is larger than the
frame time, the edge e; of the source embedding cannot be
moved at this time. However, ESO (e;) needs to be executed
to create the edge e;. We solve this contradiction by
stopping this procedure until the frame time is larger than
the edge e; priority. In other words, the priority of edge e; is
assigned equal to the edge e; priority. In the FirstPassEdge
Swap() procedure, the intersected edges are handled in an
order defined by the distance (i.e., defined in FirstPassEdge-
Swap()) to create an unmatched edge. Parameter j is
maintained to record the current edge to be handled. If
edge ¢; is an invalid edge, this invalid edge is bypassed and
the next edge e;;; is handled. If edge e;,; is a valid edge,
ESO(ej;1) is executed and edge e; is then handled again. In
general, the number of intersections will decrease by 1 after
ESO is executed. However, the number of intersections may
not decrease after ESO(ejy1) execution. For example in
Fig. 5, edge ¢; is an invalid edge. After ESO(e2) execution,
edge e¢; becomes a valid edge and the number of
intersections has not been decreased. Therefore, after ESO
execution, we must check if the number of intersections has
been decreased by this operation and parameter j is set to 1
to handle the first edge in edge set I again (defined in the
FirstPassEdgeSwap() procedure). If the creation of edge e; is
completed, we will set e;.match — true.

IProcedure FirstPassEdgeSwap()

For cache, € H' (1)
If e, priority < tand e, match = false
Find a set of edges E : {gl,ez,---,en} cH? (t) that intersec]
edgee.and are listed in an order defined by the distance,
where the distance is measured from an intersection point tol
one of the end points of edge ¢, on the 2D embedding (e.g, in
Fig. 5, the distance from each intersection to p is ordered as
e e, e)
Let n, be the number of intersections and let j<«
/* The parameter j records the current edge to be handled in|
E*/
Do
Ife, priority > e; .prior.ity'then {
e,.priroty <— e, .priority ;
Stop this procedure; }
Else If ¢ . is a valid edge then {
ESO(e, )
If the ‘number of intersections has decreased by]
ESO(e ) then {
Remove the edge e, from the sorted list S;
n, < n; —1;}
j« 1}
Else If ¢ is aninvalid edge then j < j+1
While p, > d /* for do while loop */
e,.match < true;

1

After finishing the FirstPassEdgeSwap() procedure, the
Interpolation() procedure is executed for all remaining
vertices in the current embedding H°(t) after the VSO
and VRO operations. These vertices include all matched
vertices. For these vertices, their corresponding vertices in
H™ are found and then linear interpolation is executed to



Fig. 5. (a) Edge p..p, interests edges e;-e; and edge e; is an invalid
edge. After the execution of ESO(ey), (a) is transformed into (b).

compute the intermediate shapes M(t). The connectivity of
the intermediate mesh is determined using the connectivity
of the current H(t) at time t. The successive procedure
SecondPassEdgeSwap() is performed for the refinement of the
intermediate mesh. Because the vertex positions have been
modified and may result in several narrow triangles in the
intermediate mesh after several interpolation processes, a
refinement process is performed in each frame.

3.4 Handling Patch Boundaries

The input meshes are decomposed into several patches and
each patch is handled independently. To avoid cracks along
the boundaries during the morphing, these three opera-
tions, VSO, VRO, and ESO, are carefully performed for the
boundary condition as follows:

1. VSO: If we insert a new vertex on the boundary, we
will create two triangles on each adjacent patch. For
example, in Fig. 6a, if the edge (v,,v;) is a shared
boundary, as we insert v; on this boundary, we will
create two triangles on each adjacent patch.

2. VRO: Ifaboundary vertex is removed, we will create
a hole on each adjacent patch. Each hole is then
independently retriangulated (as shown in Fig. 6b).

3. ESO: We do not allow edge flips on the boundary.
The boundary edges of the source mesh can be
naturally transformed into the boundary edges of
the target mesh after a sequence of boundary vertex
insertions and boundary vertex removals.

Using the above method, the proposed method does not
create cracks along the boundaries.

3.5 Priority Control Function (PCF)

A priority control function is defined for easy and flexible
control over the input model’s arising and dissolving
features. In the PriorityCalculation() procedure, a sorted
and normalized priority p for each vertex and each edge is
provided. These priorities can be modulated using different
priority control functions pef(p)s. Each pef(p) function is a
monotonically increasing function and pef(p) is constrained
as 0 < pcf(p) <1, where 0 < p < 1. The user defines four
functions, pef3(p), pefS(p), pefT(p), and pef(p) for the
vertices and edges of both input models, respectively. The
left side of Fig. 7 shows several examples using different
priority control functions. Their corresponding effects are
shown on the right side of Fig. 7. For example, in Fig. 7d, the
geometric connectivity of the input models is gradually
transformed and the number of vertices in the intermediate
models is linearly increased. In contrast to Fig. 7d, Fig. 7e
shows a nonlinear case of vertex priorities. The number of
vertices increases slowly at the beginning and end of a

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10,

NO. 6, NOVEMBER/DECEMBER 2004

1
LY

S

H 1
v,
A< g2 A Ya
vV,

i g\
33 1%

VAR N

)

1
=V,
—
VSO(®@)
Vs
Y~ =
7

(@) (b)

Fig. 6. Maintaining the patch boundaries as we are (a) inserting a
boundary vertex or (b) removing a boundary vertex.

!

morphing sequence. The priority control function definition
in Fig. 7c is proper when the target model has several times
as many vertices as the source model, such as in the
example in Fig. 10. Because executing VRO at the beginning
of this morphing sequence might causes a popping problem
due to the great variation, this priority control function
performs VSO and ESO only before ¢ = 0.5 to reduce the
popping problem. In Fig. 7b, the priorities for the source
and target vertices are set to 1 and 0, respectively. This
implies that all VSOs will be performed at the beginning
and there will be no VRO operation performed in this
morphing sequence. Therefore, the number of vertices for
intermediate meshes is (m + n — k), where m and n are the
number of vertices for the input meshes and % is the number
of matched vertices in VertexMatching(). Fig. 7a shows a case
resulting from a general approach that merges the embed-
dings. In this case, we do not need the control functions.
The number of vertices for merged intermediate mesh is
10,300. This is about five times the number of vertices in the
intermediate meshes in Fig. 7b. From these examples, we
see that the priority control function can easily control the
degree of detail represented in each frame of the morphing
sequence. A comparison of the number of vertices for
intermediate meshes using different control functions in
Fig. 7 is shown in Fig. 8.

Priority control functions (PCF) provide flexibility to
change the priorities of vertices and edges and the vertices
and edges are handled independently. Using the proposed
method with different PCF, the intermediate meshes can
contain vertices and edges from both models. Itis very natural
since the morphing sequence is gradually changing from
source to target meshes. In some extreme cases, for example,
Fig. 7b, at t = 0.0, all target vertices are inserted into the
source embedding using VSOs. Then, for each VSO, three or
four new edges are created on the source embedding (see VSO
in Fig. 2a and Fig. 2b.). This example can be treated like
surface subdivision. It is impossible to create some extreme
cases such as having all target vertices with all source edges
without new edges for an intermediate mesh or vice versa.
Such cases in terms of the shape seem meaningless for
morphing application. In addition, it is also meaningless to
schedule inserting a target edge ahead of its two vertices. But,
the reverse can be fine, such as Fig. 7b. Finally, from the above
discussion, using the proposed scheme with PCF, the number
of vertices in an intermediate mesh is between min(m, n) and
m + n — k, where m and n are the number of vertices in both
models and k is the number of matched vertices in the
VertexMatching() procedure.



LIN AND LEE: METAMORPHOSIS OF 3D POLYHEDRAL MODELS USING PROGRESSIVE CONNECTIVITY TRANSFORMATIONS 7

()

(e)

Fig. 7. Left: Different priority control functions; the x-axis represents the old priority p and the y-axis represents the new priority after modulation, i.e.,
pef(p). Right: The various effects of the morphing sequence using the priority control functions shown on the left.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results that were
executed on a Pentium 4 2.2G PC with 256M memory.
Digital video clips of all morphs presented in this paper can
be found on this Web site: http:/ /couger.csie.ncku.edu.tw/

7]
10300 peeseessrsosrororsrsesoes
—— Fig.7(a)
2000 AAAAAAAAAA:.‘AAAAAAAAA A —— Fig.7(b)
i)
1 h "=, = Fig.7(0)
1500 = —

T aw Bw | Fgd@
looo pREmwwuuwunux¥ e XRATE —— Fig7(e)
500

oL Time
001 0203 040506070809 1

Fig. 8. A statistical plot shows the comparison of the number of vertices
among all cases in Fig. 7.

~vr/PM /Demo.htm. In Fig. 9, we show an example of
partitioning model into patches for horse and cow models
using the proposed method. Fig. 10a and Fig. 10b show the
morphing sequences resulting from the proposed method
and an embedding merging method, respectively, with the
same surface decomposition. In terms of the complexity,
i.e.,, the number of vertices, edges, and faces, the inter-
mediate objects generated using the proposed method are
more reasonable than those produced by an embedding
merging method. In this example, the numbers of vertices

Fig. 9. Compatible patch decomposition of models (patches shown in
different colors).



8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2004

(b)

Fig. 10. (a) A morphing sequence generated by the proposed method. (b) A morphing sequence generated by an embedding merging method. Right:
Two local regions enlarged from the red quadrangles.

Fig. 12. A morphing between the models of a triceratops and a pig.

for the input models are 570 and 1,954, respectively. The proposed method gradually transforms the shapes
However, the numbers of vertices for the merged objects between the input models and linearly increases the
are up to 10,938 and the vertices in a flat region are very number of vertices. We demonstrated several pleasing
dense. With the proposed method, the number of vertices shapes and the connectivity transformations in Figs. 11, 12,
for the intermediate objects ranged between 570 and 1,954. 13, and 14. These morphing examples between two meshes



LIN AND LEE: METAMORPHOSIS OF 3D POLYHEDRAL MODELS USING PROGRESSIVE CONNECTIVITY TRANSFORMATIONS 9

Fig. 14. A morphing between the models of a rabbit and a horse.

with different vertex and edge numbers varying from small
to large differences are used to demonstrate the robustness
of the proposed algorithm. For example, in Figs. 11 and 12,
the vertex and edge numbers are close for both the source
and target meshes. Fig. 13 shows an extreme case. The
numbers of vertices for the input models are 1,975 and
50,002, respectively. The target model has about 25 times as
many vertices as the source model. In Fig. 14, the legs of the
horse are very noticeable, but rabbit’s are not. Similarly, the
ears of the rabbit are more prominent features than those of
the horse. Therefore, the details of the input models are on
different regions in this example [11]. In these examples, the
proposed method generates a smooth shape and connectiv-
ity transformation.

Table 1 shows the experimental statistics for Figs. 11, 12,
13, and 14. The morphing time in Table 1 represents the
computation time for executing three primitive operations
and generating the intermediate objects in 50 frames. In
each 50 frame morphing sequence, the time to generate an
in-between mesh is approximately the same. In contrast to
generating a sequence, to generate a single fame at t = 0.75
will take longer than that for a single frame at ¢ = 0.25. This
is because the connectivity transformations for ¢t = 0.25 are

part of that for t=0.75 (i.e.,, progressive connectivity
transformations). In this table, we also show the number
of matched vertices and edges. A higher matched number
can reduce the computation time. Fig. 13 shows an extreme
case in which all source vertices are matched. Therefore, we
do not need to execute VROs and thus save some
computation time. In this table, the number of ESOs in the
first pass is not small. This is because we need to perform a
sequence of ESOs to insert a target edge. To insert an edge,
the number of ESOs is related to the number of intersections
with the source edges. The upper bound of the number of
ESOs to transform connectivity between two embeddings
can be proven as the number of intersections between the
edges of two embeddings [25]. In Table 1, the number of
ESOs in the first pass is between the edge numbers of both
models. Therefore, the number of ESOs is reasonable in the
proposed method. In addition, consider two morphing
sequences, one with 50 frames and the other with
100 frames. The proposed scheme relates the execution
orders of primitive operations to the morphing time ¢,
0 <t < 1. Using the proposed scheme, the 25th frame in the
50 frame sequence and the 50th frame in the 100 frame
sequence will be the same, since both frames correspond to



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO.6, NOVEMBER/DECEMBER 2004

TABLE 1
Statistics
Source Target no. of |no. of MMorphing
IModel Model matche | mate | no. of | no. of no. of ESOs time
(#vertices | (#vertices | d verti-| hed | VROs| V3Os (50
[ #edges) | [ #edges) ces |edges VRO |15t Pass] 20 Pass frames)
Fig. 11 | 2703 / 7881 | 2982 /8607 | 1557 | 2000 | 1146 | 1425 1439 6551 2031 22.62 sec
Fig. 12 | 2637 /8229|2795 /8979 | 1819 | 1558 | 818 976 1169 7038 1966 19.56 sec
Fig.13 | 1954 /5856 | 50002 / 1954 | 254 0 48048 0 143380 | 43052 | 598.95 sec
150000
Fig. 14 |10002/30000] 2982/8940 | 1836 | 977 | 8166 | 1146 | 10697 | 40220 10891 | 107.54 sec

Statistics: the first two columns show the number of vertices and edges for the tnput models, The 3thr-4th columns show the ruumber of matched vertices and

edges after performing VertexMatching() procedure. The Sthr-9th columns show the rumber of primitive operations to be performed. The last column shows

the computation time for the proposed method.

TABLE 2
Statistics
Source Model Target Model Priority control e range acthe m'meer' &
(#vertices/ #faces) | (#vertices/ #faces) | function (PCF) vertices and faces in the in-
between meshes
Fig. 11 2703 / 5402 2982 / 5960 Fig. 7(e) 2703~2982 / 5402~5960
Fig. 12 2637 / 5270 2795 / 5586 Fig. 7(c) 2637~3613 / 5270~7236
Fig. 13 1954 / 3849 50002 / 100000 Fig. 7(e) 1954~50002 / 3849~100000
Fig. 14 10002 / 20000 2982 / 5960 Fig. 7(e) 2982~10002 / 5960~20000

Statistics: the range of the number of vertices and faces in the in-between meshes

t = 0.5 in two sequences. The intermediate meshes at ¢t = 0.5
for two sequences are generated after performing the same
sequence of primitive operations in which their priorities
are equal to or less than 0.5.

A popping effect could occur when intermediate objects
are rendered. In the proposed paper, the following
strategies are used to reduce the popping effects: 1) Because
the popping effects are due to the execution of three
primitive operations, vertex matching is performed to
decrease the number of executions. Table 1 shows the
number of matched vertices and edges after performing the
VertexMatching() procedure. This procedure can decrease
the number of primitive operations to be executed.
2) Appropriately scheduling three primitive operations
can also reduce the popping effects. The priorities for both
vertices and edges are assigned according to their
3D information and an appropriate priority control function
is chosen simultaneously to maintain the input model
feature and reduce the popping effects. Another possible
solution for reducing the popping effects is to evaluate the
suitable primitive operations in each frame. However, this
method is time-consuming. Finally, we also show some
statistics in Table 2 about examples Figs. 11, 12, 13, and 14.
In contrast to previous work, the number of faces is not too
many in these examples. Unlike other examples, the
number of vertices and triangles in Fig. 12 is greater than
those of input models because we choose Fig. 7c as its PCF.
Using Fig. 7c, we begin to perform VROs after ¢t = 0.5 and
finish all VSOs at ¢t = 0.5. Therefore, at ¢t = 0.5, the number
of vertices is maximum for M(t = 0.5).

5 CoNcLUSIONS AND FUTURE WORK

Anovel approach for computing morphs between polyhedral
3D objects is presented. This approach can add or remove
vertices dynamically using three primitive operations. The
connectivity of the source model can thus be transformed into
that of the target model. In contrast to other previous works,
the connectivity of an in-between mesh is gradually changing
and less complicated than those of other embedding merging
and multiresolution remesh approaches. Several future
works can be done and are described as follows: Linear
interpolation may cause shape self-intersection. We are
planning to design new approaches to solve this problem.
To perform 3D morphs with texture is other interesting and
challenging future work. Simply interpolating texture
attributes can only work for simple examples. A better
method such as [19], [20] must be designed. Although the
morphing sequences are smooth in the experiments, we
cannot guarantee the popping problem will not occur in
extreme examples. For example, if there are many primitive
operations performed on a small region at the same time,
the popping problem will occur in this region at that time.
Evaluating a suitable selection of primitive operations for
each frame could solve this problem. In addition, the
priority functions introduced are based on a geometrical
metric; however, the change in connectivity caused by
introducing the element (vertex, edge) should be another
possible metric to be considered in future work. However,
the two approaches above may be time-consuming. Fast
morphing can be possible if a set of transformations during



LIN AND LEE: METAMORPHOSIS OF 3D POLYHEDRAL MODELS USING PROGRESSIVE CONNECTIVITY TRANSFORMATIONS 11

morphing are calculated as a preprocess and are recorded
in advance [26]. For fast morphing, we can include this
technique in the near future.

ACKNOWLEDGMENTS

The authors extend their thanks to the anonymous reviewers
for their helpful comments. This paper is supported by the
National Science Council, Taiwan, Republic of China under
contract Nos. NSC-92-2213-E-006-066, NSC-92-2213-E-006-
067, and NSC-93-2213-E-006-026.

REFERENCES

[1] F. Lazarus and A. Verroust, “Three-Dimensional Metamorphosis:
A Survey,” The Visual Computer, vol. 14, pp. 373-389, 1998.

[2] M. Alexa, “Mesh Morphing,” STAR: State of The Art Report,
EUROGRAPHICS, 2001.

[3] A. Lerious, C.D. Garfinkle, M. Levoy, “Feature-Based Volume
Metamorphosis,” ACM SIGGRAPH Conf. Proc., pp. 449-456, 1995.

[4] D. Cohen-Or, D. Levin, and A. Solomovici, “Three-Dimensional
Distance Field Morphing,” ACM Trans. Graphics, vol. 17, no. 2,
pp- 116-141, 1998.

[5] A. Gregory, A. State, M. Lin, D. Manocha, and M. Livingston, “
Interactive Surface Decomposition for Polyhedra Morphing,” The
Visual Computer, vol. 15, no. 9, pp. 453-470, 1999.

[6] M. Zockler, D. Stalling, and H.-C. Hege, “Fast and Intuitive
Generation of Geometric Shape Transitions,” The Visual Computer,
vol. 16, no. 5, pp. 241-253, 2000.

[71 M. Alexa, “Merging Polyhedral Shapes with Scattered Features,”
The Visual Computer, vol. 16, no. 1, pp. 26-37, 2000.

[8] T.-Y.Lee and P.-H. Hung, “Fast and Intuitive Metamorphosis of
3D Polyhedral Models Using SMCC Mesh Merging Scheme,”
IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 1,
pp- 85-98, Jan.-Mar. 2003.

[9] T. Kanai, H. Suzuki, and F. Kimura, “Three-Dimensional
Geometric Metamorphosis Based on Harmonic Maps,” The Visual
Computer, vol. 14, pp. 166-176, 1998.

[10] T.Kanai, H. Suzuki, and F. Kimura, “Metamorphosis of Arbitrary
Triangular Meshes,” IEEE Computer Graphics and Applications,
pp- 62-75, 2000.

[11] A. Lee, D. Dobkin, W. Sweldens, and P. Schroder, “Multi-
resolution Mesh Morphing,” ACM SIGGRAPH Conf. Proc.,
pp- 343-350, 1999.

[12] S. Shlafman, A. Tal, and S. Katz, “Metamorphosis of Polyhedral
Surfaces Using Decomposition,” EUROGRAPHICS, vol. 21, no. 3,
pp- 219-228, 2002.

[13] U. Finke and A. Hinrichs, “Overlaying Simply Connected Planar
Subdivisions in Linear Time,” Proc. 11th Ann. Sym. Computational
Geometry, pp. 119-26, June 1995.

[14] M. Alexa, D. Cohen-Or, and D. Levin, “As-Rigid -as-Possible
Shape Interpolation,” ACM SIGGRAPH Conf. Proc., pp. 157-164,
2000.

[15] T. Michikawa, T. Kanai, M. Fujita, and H. Chiyokura, “Multi-
resolution Interpolation Meshes,” Proc. Ninth Pacific Graphics Int’l
Conf. (Pacific Graphics 2001), pp. 60-69, Oct. 2001.

[16] E. Praun, W. Sweldens, and P. Schroder, “Consistent Mesh
Parameterization,” ACM SIGGRAPH Conf. Proc., pp. 179-184, 2001.

[171 M. Ahn and S. Lee, “Mesh Metamorphosis with Topology
Transformation,” Proc. Pacific Graphics 2002, pp. 481-482, Oct. 2002.

[18] P. Alliez, M. Meyer, and M. Desbrun, “Interactive Geometry
Remeshing,” ACM SIGGRAPH Conf. Proc., pp. 347-354, 2002.

[19] I Eckstein, V. Surazhsky, and C. Gotsman, “Texture Mapping
with Hard Constraints,” Computer Graphics Forum, vol. 20, no. 3,
pp- 95-104, 2001.

[20] V. Kraevoy, A. Sheffer, and C. Gotsman, “Matchmaker: Con-
structing Constrained Texture Maps,” ACM SIGGRAPH Conf.
Proc., pp. 326-333, 2003.

[21] H. Hoppe, T. DeRose, T. Dunchamp, J. McDonald, and W.
Stuetzle, “Mesh Optimization,” ACM SIGGRAPH Conf. Proc.,
pp- 19-26, 1993.

[22] H. Hoppe, T. DeRose, T. Dunchamp, J. McDonald, and W.
Stuetzle, “Mesh Optimization,” Technical Report TR 93-01-01,
Univ. of Washington, 1993.

[23] J.R. Shewchuk, “Updating and Constructing Constrained Delau-
nay and Constrained Regular Triangulations by Flips,” Proc.
Symp. Computational Geometry, pp. 181-190, 2003.

[24] R.Seidel, “A Simple and Fast Incremental Randomized Algorithm
for Computing Trapezoidal Decompositions and Triangulating
Polygons,” Computational Geometry: Theory and Applications, pp. 51-
64, 1991.

[25] S. Hanke, T. Ottmann, and S. Schuierer, “The Edge-Flipping
Distance of Triangulations,” J. Universal Computer Science, vol. 2,
no. 8, pp. 570-579, Aug. 1996.

[26] H. Hoppe, “Efficient Implementation of Progressive Meshes,”
Computers & Graphics, vol. 22, no. 1, pp. 27-36, 1998.

Chao-Hung Lin received the BS degree in
computer science/engineering from Fu-Jen Uni-
versity, Taipei, Taiwan, in 1997. He received the
MS and PhD degrees in computer engineering
from National Cheng-Kung University, Tainan,
Taiwan, in 1998 and 2004, respectively. He is
now serving in the Taiwan army. His research
interests include computer graphics and image
processing.

Tong-Yee Lee received the BS degree in
computer engineering from Tatung Institute of
Technology in Taipei, Taiwan, in 1988, the MS
degree in computer engineering from National
Taiwan University in 1990, and the PhD degree
in computer engineering from Washington State
University, Pullman, in May 1995. Now, he is a
professor in the Department of Computer
Science and Information Engineering at National
Cheng-Kung University in Tainan, Taiwan, Re-
public of China. He served as a guest associate editor for the |IEEE
Transactions on Information Technology in Biomedicine from 2000 to
2004. His current research interests include computer graphics, image-
based rendering, visualization, virtual reality, surgical simulation, and
distributed and collaborative virtual environment. He leads a Computer
Graphics Group/Visual System Lab at National Cheng-Kung University
(http://couger.csie.ncku.edu.tw/~vr). He is a member of the IEEE.

> For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.



