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Abstract
In this paper, a novel graph-based shape matching
scheme for three-dimensional articulated objects is
introduced. The underlying graph structure of a given
3D model is composed of its topological skeleton
and local geometric features. Matching two graph
structures is generally a NP-hard combinatorial opti-
mization problem. To reduce computation cost, two
graphs are embedded on a high-dimensional space,
and then matched based on an extension of Earth
Mover’s Distance (EMD). Furthermore, the symmetric
components of an articulated object are determined
by a voting algorithm with a self-matching strategy to
refine the matching correspondences. Experimental
results show that the proposed approach is robust,
even when the models are under the surface distur-
bances of noise addition, smoothing, simplification,
similarity transformation, and pose deformation.
In addition, the proposed approach is capable of
handling both global and partial shape matching.

Keywords: Shape matching, skeleton, geometric
features, graph matching

1 Introduction
Three-dimensional shape matching is a fundamental
and important research topic in computer graphics and
visualization. The main theme is to find a compact
and accurate shape descriptor to efficiently and robustly
match shapes. Most of previous researches focused on
efficient shape matching. Their algorithms perform very
well on the existing benchmarks for shape retrieval, but
do not pay much attention to 3D objects with various
surface disturbances such as noise addition, smoothing,
simplification, similarity transformation, and even pose
deformation. Handling 3D shape matching under these
surface disturbances is challenging and interesting. In
this paper, a graph-based shape matching scheme for
this problem is introduced.

As compared with recent work on shape matching,
the proposed scheme has three major contributions.
First, a novel graph-based matching algorithm is pro-
posed, which is useful for global and partial shape
matching. Most previous works are designed solely ei-
ther for global [1, 2, 3, 4] or partial shape matching [5].
Second, the underlying graph structure is composed of
a topological skeleton and local geometric features of

3D model. This graph structure is useful for robust
shape matching. Specifically, the extracted topological
skeleton and geometrical features are insensitive to var-
ious surface disturbances. Thus, our approach is robust
against these surface disturbances. Third, the symmetry
of a 3D object is extracted by a voting approach with a
self-matching strategy, and then used to assist in shape
matching. As a result, our approach can lead to more
accurate matching.

In this paper, the local geometric feature is repre-
sented by a few SHs. Specifically, only a few low-
frequency SHs are used to represent the local geome-
tries. This makes the proposed approach insensitive to
various surface disturbances. The use of SHs [3, 6, 7, 8]
or a model skeleton [9, 10] in 3D shape matching is not
a novel concept. However, there are substantial differ-
ences between our method and the previous methods.
In the studies [3, 6, 7, 8], the geometric characteristics
of entire objects are represented as a set of SH coeffi-
cients, making them infeasible in cases of articulated
object matching and partial matching. On the other
hand, in the studies of Hilaga et al. [10] and Sundar
et al. [9], shape matching may be incorrect because
their skeleton-based representation lacks the geometric
characteristics of 3D objects. In contrast, the proposed
approach utilizes SH coefficients to represent local ge-
ometries of 3D objects and integrate these coefficients
with the extracted skeleton for shape matching.

2 Related Work
In this section, only the previous studies which are
most closely related to our work are reviewed. The ap-
proaches of 3D shape matching can be classified into
two main categories, geometry-based and topology-
based, depending on the type of shape features used in
matching. In the geometry-based approaches, most of
them are based on global geometric descriptors. The
shape similarity is measured by various geometric shape
descriptors such as geometric moments [11], spherical
harmonics (SHs) [2, 3, 6, 7, 8], and shape distributions
[12]. These approaches rely on scale normalization and
orientation alignment, which is used to establish a rough
correspondence between objects. The entire object are
represented as a global feature vector. This will poten-
tially cause misalignment in local surfaces with simi-
lar shapes, making them infeasible in articulated object
matching and partial shape matching. Recently, some



schemes based on local geometric descriptors have been
proposed to solve this problem [5, 13, 14]. The idea
is to describe the local geometries by salient geometric
features [5, 13] or spin images [14]. The local geome-
try descriptor allows them to perform articulated object
matching and partial shape matching. However, the fi-
delity of salient geometric features mainly depends on
the mesh quality and the curvature analysis, as men-
tioned in [5], and similarly the spin images mainly de-
pends on the vertex normals. This makes these ap-
proaches infeasible in handling objects with significant
noise.

In the topology-based approaches [4, 9, 10, 15],
topology is usually represented as a skeleton. These ap-
proaches rely on the fact that the skeleton is a compact
shape descriptor, and assume that similar shapes have
similar skeletons. It allows a topology-based approach
to facilitate efficient shape matching and even for par-
tial matching [15]. However, this assumption is not al-
ways correct. As mentioned in [16], similar skeletons
may potentially have completely different shapes. The
shapes may be mismatched because the skeleton-based
representation lacks the substantial geometric informa-
tion. Therefore, they propose a 2D shape matching ap-
proach by combining a graph representation with a ge-
ometric feature [16]. The shortest paths between every
pair of skeleton endpoints are represented as sequences
of radii of maximal disks at the corresponding skeleton
points. The shape matching is based on the similarity
of the shortest paths between each pair of endpoints of
pruned skeletons. In this approach, however, the accu-
racy of shape matching mainly depends on the skeleton
pruning. If the skeletons are not consistently pruned,
shape matching will be a challenging task. Instead of
pruning on graph space, we first embed the underly-
ing graph on a high-dimensional space and then perform
matching efficiently and accurately on a set of points.

Figure 1: Overview of the proposed shape matching scheme.

3 Algorithm Overview
As schematically illustrated in Fig. 1, the proposed
scheme consists of four major steps: skeleton extrac-
tion, geometry encoding, symmetry determination, and
graph matching. First, a skeleton extraction approach
based on geometric contraction operation is adopted
[17] (Fig. 1(a)). The contraction process produces a
mesh with thin skeleton shape, and the skeleton-vertex
correspondences are recorded in each skeleton node.
Second, instead of globally encoding the entire geom-
etry of a given 3D object, the local surface geometry for

each skeleton node is individually encoded by a small
set of SHs (Fig. 1(b)). Next, a voting approach with
a self-matching strategy is adopted to extract the sym-
metric parts of articulated objects (Fig. 1(c)). Com-
bining this useful information with the skeleton graph
can potentially improve shape matching. Finally, the
skeleton containing nodes and edges are embedded on
a high-dimensional space and becomes a set of points
(Fig. 1(d)). Therefore, the graph matching is reduced to
the problem of point set matching. Here, a registration
algorithm with the extended EMD metric is performed
for point set matching (Fig. 1(e)).

Figure 2: Skeleton extraction result. Left: Models and their
skeletons. Middle: Close-up views of the junction
and leaf nodes. Right: The corresponding surface
patches visualized in gold color.

4 Graph Construction
We adopt the approach presented in [17] to extract 3D
model skeleton. This technique is pose-, sampling-, and
noise-insensitive. Therefore, the extracted skeleton has
good potential for use in shape matching. Its connectiv-
ity surgery step simultaneously records skeleton-vertex
correspondence while collapsing edges. The informa-
tion of skeleton-vertex mapping is used to find the lo-
cal surface patches in the proposed shape matching ap-
proach. The extracted skeleton-curve is composed of
a few junction nodes (i.e., degree > 2 ), leaf nodes,
and several degree = 2 nodes (Fig. 2). Generally, the
topology of 3D shape can be concisely represented by
only junction and leaf nodes, since they are the most
significant ingredients of skeleton. Therefore, the lo-
cal surface patches corresponding to either the junction
or the leaf nodes are considered as the important ge-
ometric components in the proposed scheme. We uti-
lize all junction and leaf nodes of the extracted skele-
ton and their corresponding surface patches to build a
graph structure for shape matching. To compensate for
the lack of degree = 2 nodes, we consider their ap-
proximated geometric details to weight the edge of the
graph structure. Given two adjacent nodes in a graph
na = (xa,ya,za,ra) and nb = (xb,yb,zb,rb), where x, y, z
represents the position of the node and r represents the
average radius of a degree = 2 nodes, we define the
weight of edge connecting two adjacent nodes as:

W(na,nb)=‖na−n1‖+‖n1−n2‖+· · ·+‖nh−nb‖ (1)
where n1· · ·nh represent the successive degree = 2 nodes
between the nodes na and nb.

5 Geometry Encoding
The surface patches obtained from skeleton-vertex map-
ping is encoded by SH, i.e., a geometry descriptor. We



refer the readers to the related SHs papers [2, 3] for a
more comprehensive comparison on geometry descrip-
tors. In this section, we describe the SH representation
for surface patches. A set of SH functions constitute an
orthonormal system on a sphere. Any functions f (θ ,φ)
on a sphere can be represented by a linear combination
of these basis functionsY m

l (θ ,φ) as follows:
f (θ ,φ) = ∑

∞
l=0 ∑

l
m=−l am

l Y m
l (θ ,φ) (2)

where am
l are the SH coefficients. Given a maximum

degree lmax, an orthonormal system expanded by the SHs
involves (lmax+1)2 coefficients. For a function with a
set of spherical samples (θi,φi) and their function values
fi= f (θi,φi),1 6i6 k, the coefficientsam

l can be obtained
by solving a least-square fitting [18] as follows:

y1,1 y1,2 · · · y1,k
y2,1 y2,2 · · · y2,k
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...
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...
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f1
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...
fk

 (3)

where yi, j =Y m
l (θi,φi), b j =am

l , j = l2 + l + m + 1, and
k = (lmax + 1)2. A surface patch containing a set of
vertices is parameterized as radial variances of vertices
along the rays from the center of a unit sphere in the SH
expansion. The parameterization requires establishing
a mapping between the vertices and the unit sphere. To
avoid the non-trivial process of spherical parameteriza-
tion [19], we simply determine the mapping by project-
ing the verticesV on the sphere. Prior to projection, the
center of the unit sphere for each local patch is set in the
position of its corresponding skeleton graph node. The
coefficients calculated by Eq. (3) are 3-tuple vectors
am

l = (am
lx,a

m
ly,a

m
lz). Since the L2-norm of the SH coef-

ficients is rotation-invariant[18], a local surface patch is
encoded as:

SH( f(θ,φ))=({|am
0 |}00,{|am

1 |}1−1,· · ·,{|am
lmax
|}lmax
−lmax

) (4)

To make the geometric encoding insensitive to vari-
ous surface disturbances, only a few low-frequency SHs
are used to encode surface patches. For all experiments
in this paper, the maximum degree lmax is set to 5. Be-
sides, the coefficient ak

l is the complex conjugate of the
coefficient a−k

l (i.e., |ak
l |= |a

−k
l |). Only the coefficients

ak
l with k > 0 (i.e., 15 floating-points in total) is used to

represent a local patch.

6 Graph Matching Algorithm
A graph G can be described as a pair (N,E), where N is a
set of nodes andE is a set of edges connecting the nodes.
In the general setting of graph matching, two graphs
Gs =(Ns,Es) and Gt =(Nt,Et) are given. The goal is to
establish correspondence among the nodes and edges
of these two graphs. The proposed approach is based
on Earth Mover’s Distance (EMD) [20] which is a well-
known similarity measurement in 2D image retrieval.
EMD can be used to match graphs with various sizes in
nodes and edges. However, the quality of graph match-
ing relies not only on node matching but also on graph
structure matching. To incorporate the graph structure
in the node matching, we further extend a low-distortion

embedding approach [21] to embed a graph containing
both the edges and vertices to a set of points on a high-
dimensional space (Section 6.2). Thus, a complicated
graph matching is reduced to a point set matching. Gen-
erally, there is an affine transformation among these two
point sets. Hence, a registration process is required to
align point sets based on theEMDdistance measurement
(Section 6.3). To improve the matching accuracy, the
local geometric features and the neighborhood informa-
tion are also incorporated into the distance measurement
(Section 6.4). In addition, the symmetric components of
graphs are determined for better and consistent match-
ing in the final result (Section 6.5).

6.1 Earth Mover’s Distance (EMD)
A set of nodes with weights in a graph is denoted as
N ={(ni,wi)}n

i=1, where ni and wi represent the i-th node
and its weight, respectively, and n is the number of
nodes. The weight wi is set to the percentage of area
of the local surface belonging to the node ni over the
total surface area of the input mesh. In this manner, a
node corresponding to a large surface patch will be as-
signed a large weight. Given two node sets, Ns and Nt,
a probability matrix (or called flow) between these two
sets is defined asF =[fi j]∈Rm×n, wheremandn represent
the number of nodes in Ns and Nt, respectively, and fi j is
the probability of ns

i matching to nt
j . Denote all possible

flows between Ns and Nt as Ψ(Ns,Nt), and EMD(Ns,Nt) is
defined as the minimum amount of matching cost in all
possible flows, that is:

EMD(Ns,Nt)=
minF∈Ψ(Ns ,Nt )Cost(F,Ns,Nt)

min(∑ws,∑wt) (5)

whereCost(F,Ns,Nt) is the cost function for a possible
flow F between Ns and Nt . The cost function is defined
as: Cost(F,Ns,Nt) = ∑

m
i=1 ∑

n
j=1 fi jd(ns

i ,n
t
j) (6)

where ns
i ∈ Ns, nt

j ∈ Nt and d(ns
i ,n

t
j) represent the dis-

tance between nodes ns
i and nt

j. The calculation of dis-
tance between nodes will be described in Section 6.4.

6.2 Graph-space to Euclidean-space Embedding
The complexity of graph matching is usually much
higher than point set matching. Graph matching re-
quires appropriate pruning to speed up execution and
to find the correct results. In contrast, matching in
Euclidean space simply finds a transformation between
two point sets. We consider the embedding fg : N→ P,
where N is a set of graph nodes with a set of distances
D (i.e., the distances between all pairs of nodes), and
P is a set of points in a high-dimensional Euclidean
space. This embedding aims at transforming the match-
ing problem defined over the complex graph space into
the problem defined over the simple Euclidean space.
This embedding is achieved as follows. First, a graph
is converted into a tree structure and then a tree decom-
position method [21] is applied to further embed a tree
into a Euclidean space. Two input graphs may be em-
bedded into two Euclidean spaces with different dimen-
sionalities. Thus, a dimensionality expansion process is
required in the second step to make them identical in
dimensionality prior to matching.



Before embedding, the input graph is first converted
to a tree structure. This requires that the shortest-path
distances between any two nodes in the tree are similar
to that in the graph. Thus, the minimal spanning tree is
selected, and the node is selected as a root node if the
summation of distances between it to all other nodes is
minimal. The corresponding root node in another graph
is determined according to the neighborhood similarity
of node, which will be described in Section 6.4. Then
the idea of tree decomposition [21] is adopted to embed
a tree to a Euclidean space.
Tree Decomposition. As illustrated in Fig. 3, the tree
is first decomposed into several disjoint paths. Among
these disjoint paths, the thick blue paths starting at
the root node to the leaf nodes are called level-1 path,
which are extracted by a modified depth-first-search
(DFS) traversal approach. The tree traversal starts at
the root node and then traverses the sub-trees of root
node by DFS. In this example, the root node has three
branches. Thus, there are three level-1 paths. After
removing the level-1 paths from the tree, three trees
remain. The same traverse strategy is used on the
remaining trees. We can extract another three disjoint
paths, called level-2 path (i.e., thin yellow thin paths).
This process is repeated until all edges in the tree have
been traversed and removed. In Fig. 3, there are seven
paths in total (three level-1 paths, three level-2 paths,
and one level-3 path). Note that we randomly select
branches in the process of DFS and thus, there is an
affine transformation among the embedded point sets
and a registration process is required to align the point
sets.

Figure 3: Euclidean space embedding by tree
decomposition.

Euclidean Space Embedding. In this step, a tree T is
converted into a Euclidean space P, i.e., ft : T → P. The
dimension of P is the number of paths, denoted as k. In
other words, ft is a k-tuple vector (P1, · · · ,Pk). The com-
ponents P1,· · ·,Pk are associated with the decomposed
paths in increasing order of tree decomposition levels.
As illustrated in Fig. 3, the first three components P1,
P2, and P3 correspond to the three level-1 paths. The
components P4, P5, and P6 correspond to the three level-2
paths, and the component P7 corresponds to the level-
3 path. The component coefficients are defined as the
distances traversed in the corresponding paths. For ex-
ample in Fig. 3, the traversal path from root node to
node v goes through level-1 path P1, and the distance tra-
versed in this path is 5. It then goes through the level-2
path P4, and its traversal distance in this path is 2. Thus,
f (v) is represented as (5,0,0,2,0,0,0) in ℜ7. Note that
the tree decomposition does not preserve any consistent

traversal order between graphs. Thus, estimating the
affine transformation between two embeddings is nec-
essary before embedding matching.
6.3 Dimensionality Expansion and Point Sets

Matching
The input graphs may be embedded into spaces of dif-
ferent dimensionalities on Euclidean space. Unifying
the dimensionalities of their embeddings is required be-
fore matching. Generally, a dimensionality reduction
process, transforming the embeddings of higher dimen-
sionality to a new coordinate system of lower dimen-
sionality, can be adopted here to reduce computation
time. However, the dimension reduction will lose some
characteristic features of the graph of higher dimension-
ality. This will lead to failed partial matching. For ex-
ample in Fig. 4, we expect that the red, blue, and yellow
nodes in the embeddings are matched. However, after
reducing the dimensionalities, not only the components
with lower level are reduced but also the yellow compo-
nent of the embedding shown in the top figure is reduced
to the blue component. This makes the nodes marked
by red and brown quadrangles mismatched. To over-
come this problem, we alternatively adopt a dimension-
ality expansion process that transforms the embedding
with lower dimensionality to a new coordinate system
of higher dimensionality by simply padding zeros in the
corresponding empty components level by level. Adopt-
ing this lossless dimensionality expansion process gives
a good chance to provide not only the global but also
the local shape matching.

Figure 4: Point set matching by dimensionality reduction
process. Left: The embeddings; Right: The re-
sults of dimensionality reduction (the dimension-
alities are displayed by colors) and matching (the
corresponding nodes are marked by quadrangles
with the same color).

Figure 5: Example of failed partial matching.
Once two embeddings have identical dimensionality,

we find the affine transformation between these two em-
beddings based on the EMD distance measurement. We
adopt an iterative process called optimal Flow and op-
timal Transformation (FT) that alternately find the best
flow for a given transformation and find the best trans-
formation for a given flow [20]. Given an initial trans-
formation T (0), the iteration is formulated as:



F(k) = argminF∈Ψ(Es,Et) ∑
m
i=1 ∑

n
j=1 fi jd(ns

i ,T
k−1(nt

j)) (7)

T (k) = argminT∈τ ∑
m
i=1 ∑

n
j=1 f (k−1)

i j d(ns
i ,T (nt

j)) (8)
where Es and Et represent the embeddings of graphs
Gs and Gt , respectively, in Euclidean space, and τ rep-
resents the set of allowable affine transformations. In
each iteration, we calculate Eq.(7) to obtain the corre-
spondence of these two embeddings, and then estimate
the new transformation between these two embeddings
by Eq.(8). When the iteration process converges, the
flow matrix F contains the matching correspondences,
and EMD(ES,Et) indicates the similarity value of these
two graphs.

6.4 Distance Metric
We need to calculate the distance between nodes in
matching. To define this distance, three distance terms
are considered, that is 1) node distance, 2) geometric
similarity, and 3) neighborhood similarity. The term of
node distance is simply defined as the Euclidean dis-
tance between two embedded nodes. The term of geo-
metric similarity is defined as the difference in SH coef-
ficients between the nodes (i.e., sh() in Eq.(9)). To de-
fine the neighborhood similarity (i.e., ns() in Eq.(9)),a
local similarity matrix LS = [lsi j] ∈ Rm×n between Ns

and Nt is generated. The entity lsi j represents the neigh-
borhood similarity between the nodes ns

i and nt
j, in

which node neighborhood is defined as the immediately
adjacent nodes and the connecting edges. The similar-
ity lsi j is calculated by first embedding the neighbor-
hood of ns

i and nt
j and then computing the similarity be-

tween two embeddings. Note that we also use Eq.(9)
to compute lsi j, but do not include the term ns(). The
computation cost of the local similarity matrix will not
be time-consuming because the neighborhood of each
node contains only a few nodes and edges. Finally, the
distance used in EMD is reformulated as:

Cost(F,Es,Et) =
m

∑
i=1

n

∑
j=1

fi j∗(d(es
i,e

t
j)+sh(ns

i,n
t
j)+ns(ns

i,n
t
j)),

sh(ns
i ,n

t
j) = ‖SH(sur f (ns

i ))−SH(sur f (nt
j))‖,

ns(ns
i ,n

t
j) = lsi j (9)

where es
i and et

j represent the embeddings of nodes ns
i

and nt
j, respectively; sur f (k) represents the correspond-

ing local surface patch of a node k; and d(es
i ,e

t
j) rep-

resents the 2-norm Euclidean distance between the two
embedded nodes es

i and et
j.

6.5 Symmetry Determination
Most shape matching approaches do not consider object
symmetry, potentially resulting in inconsistent match-
ing correspondence. Inspired by Podolak et al. [22], a
fast global symmetry determination approach based on
a voting strategy with a self-matching approach is intro-
duced. The approach is executed on a skeleton struc-
ture instead of a volumetric representation, making it
efficient and insensitive to noise and pose-deformation.
To further take efficiency into account, we only deter-
mine a global median axis for skeleton and skip local
symmetric parts. The global median axis is generally

sufficient to improve the shape matching. All nodes in
the skeleton graph are separated into two categories: be-
longing to the symmetric parts and the median axis part.
For each voting, a pair of leaf nodes denoted as (ni,n j)
is selected, and the possibility of node nk (nk 6= ni and
nk 6= n j) to be the median axis is formulated as:

S(ni,n j)
nk = L1/L2 (10)

where L1 and L2 represent the distances between nk and
the selected leaf nodes ni and n j. Let L2 > L1, the range
of scope is [0,1]. For example in Fig. 6, two corre-
sponding pairs of leaf nodes in the fingers and toes are
selected. The possibility of the remaining node nk is vi-
sualized. Blue nodes near the selected leaf nodes have
low possibility, and red nodes near the body parts have
high possibility. In this manner, a vote can be casted
on each nk, and a possible median axis is determined by
grouping nodes with higher scores. The threshold for
grouping can be easily determined under the restriction
that the end nodes of the possible median axis group
must be junction or leaf nodes (the purpose is to group
a complete part), and the fact that the length of edges
connecting to a junction node is larger than others (this
makes it easy to find a threshold value that cuts a skele-
ton at the junction nodes). Once the possible median
axis is obtained, the symmetric parts separated by this
median axis can also be determined. Fig. 7 shows some
results of the possible symmetric parts extracted from
different votes. For each case in this figure, blue and
red sub-trees are extracted symmetric parts using the or-
ange sub-tree as the median axis. For each voting, the
symmetric parts can be extracted and the scores of all
nodes can be obtained. For consistent symmetry deter-
mination, each voting is weighted by a self-matching
strategy. A large weight is given to a voting if its ex-
tracted symmetric sub-trees have high similarity. Thus,
the score Snk of node nk is reformulated as:

Snk =
∑(ni,n j)∈candidate set wi jS

(ni,n j)
nk

∑(ni,n j)∈candidate set wi j
(11)

where wi j is the weight of S(ni,n j), i.e., the similarity be-
tween two extracted sub-trees.

Figure 6: Voting example. The nodes in red circles are the
selected leaf nodes. The voting scores are visual-
ized by color ranging from 0.0 (blue) to 1.0 (red).

Once each node is computed by Eq.(11), the nodes
with high scores are defined as the median axis. Sim-
ilarly, the grouping is under the same restriction men-
tioned above. Then, the connected parts separated by
the median axis are extracted as the symmetric parts.
Once the median axis is obtained, the correspondence
of each sub-tree is determined by finding the sub-tree
with the highest similarity. Fig. 8 shows several results



Figure 7: Result of extracted symmetric parts from different
voting; red and blue sub-trees are symmetric parts,
and the orange sub-tree is the corresponding me-
dial axis part.

of symmetric parts and their symmetric axis. In this ex-
ample, the median axis is composed of orange nodes,
and the blue sub-tree corresponds to the red sub-tree.

Figure 8: Result of symmetry. The group of red nodes and
the group of blue nodes are symmetry.

The extracted symmetries and the correspondences
between the symmetric parts are used to fix the inconsis-
tent matching. It is performed under the simple restric-
tion that the nodes in a symmetric part of an object must
all be matched to a symmetric part of another object. In
Fig. 8, for example, the symmetric parts are extracted
in these articulated objects. These symmetric parts are
visualized by red and blue colors. If inconsistent match-
ing occurs, we fixed it by simply changing the matching
by the node’s correspondence. In this simple manner,
the inconsistent matching can be corrected.

7 Experimental Results and Discussion
Experimental results are evaluated on a PC with a 2.13
GHz CPU and 2.0 GB memory. On average, the com-
putation time for preprocessing is 12.37 seconds (10
seconds for skeleton extraction, 2.37 seconds for SHs
encoding), and that for shape matching is 1.573 (0.032
seconds for graph embedding, 1.541 seconds for match-
ing). To evaluate the robustness of our approach, the
models with various operations such as similarity trans-
formation, noise addition, smoothing, simplification,
and pose-deformation are tested. The generated match-
ing correspondences shown in Fig. 9 are almost identi-
cal. This demonstrates that our approach can potentially
obtain correct matching even the models are substan-
tially altered by various surface disturbances.

Some shape matching approaches are based either on
geometric features [2, 3, 5, 13] or topological features
[9, 10, 14]. It is difficult to perform exact compar-
isons without obtaining their codes or re-implementing
these methods. In order to make an objective conceptual
comparison of these approaches regardless of the sub-
tle details of each method, we proposed the following
arrangement. The skeleton and SHs coefficients are se-
lected as features in the topology-based and geometry-
based shape matching, respectively. In other words, ei-
ther the distance term d() or the SH coefficient term sh()
is respectively used only in the cost evaluation func-
tion Eq.(9) to represent methods using either topologi-
cal or geometric attributes. The experimental results are

shown in Fig. 10. Expectedly, the matching results by
using only topological or geometric features are worse
than the results of combining both. This is because
similar objects may have dissimilar skeletons, and sim-
ilar skeletons may have visually different shapes. Our
approach utilizing geometric features, topological fea-
tures, a neighborhood similarity measurement, and ob-
ject symmetry information in graph matching can po-
tentially handle articulated objects well when geomet-
ric shapes or topological skeletons are very different
(as shown in Fig. 11). In addition, with the process
of dimensionality expansion in graph matching, our ap-
proach can handle both partial and global shape match-
ing (as shown in Figs. 11 and 12) using the same algo-
rithm.

Figure 9: Shape matching under various disturbances.

Figure 10: Comparison of shape matching. (a) using skele-
tons; (b) using SH coefficients; (c) using both
skeletons and SH coefficients; (d) using skele-
tons, SH coefficients, and symmetry information
shown in (e).

Figure 11: Result of global shape matching.

Finally, we show a theoretical comparison of robust-
ness between our approach and the related 3D shape
matching approaches [1, 2, 3, 5, 10, 15] in Table 1.
The robustness of matching under various operations,
and the capabilities of partial and global matching are
considered. As mentioned previously, the approaches
based on global geometric features [2, 3] are sensitive
to pose deformation since the geometric shape will be
altered by pose deformation. The approach based on lo-
cal salient geometric features [5] or matching in a spec-
tral domain [1] is partially sensitive to noise addition
and simplification because shape matching is mainly
based on curvature analysis. As for the topology-based
approaches [10, 15], they are also slightly sensitive to



Table 1: Theoretical comparison between our approach and the related schemes [1, 2, 3, 5, 10, 15]. The surface
disturbances of noise addition, smoothing, pose deformation, similarity transformation (S. T.) and simplifi-
cation are tested. The symbols ’X’, ’4’, ’©’,’

√
’ indicate that this approach is sensitive, partially sensitive,

slightly sensitive and insensitive to the surface disturbance, respectively. The approaches based on what kind
of topological feature (T. F.) and geometric feature (G. F.) are shown in columns 2 and 3. The abilities of
global matching (1) and partially matching (2)are shown in column 4.

T. F. G. F. Matching Noise Addition Smoothing Pose Deformation S.T. Simplification
[2] None SHs (1)

√ √
X

√ √

[3] None SHs (1)
√ √

X
√ √

[1] None Dist. (1) 4 ©
√ √

4
[5] None Saliency (2) 4 ©

√ √
©

[10] Reeb graph None (1), (2) ©
√ √ √

©
[15] Skeleton curve None (1), (2) ©

√ √ √
©

Our approach Skeleton graph SHs (1), (2)
√ √ √ √ √

Figure 12: Result of partial shape matching.

noise addition and simplification because skeletons may
be slightly different after the models are altered by these
two kinds of surface disturbances. In our approach, we
have a good chance to solve this problem by enhancing
the graph nodes with local geometric features, adopt-
ing the process of dimensionality expansion and neigh-
borhood similarity measurement in the graph matching,
and utilizing object symmetries to assist in matching
correspondences.

8 Conclusions and Future Work
We presented a novel graph-based technique for 3D
shape matching. Our approach can accurately obtain
both partial and global matching correspondence be-
tween the 3D articulated shapes. The skeleton asso-
ciated with local geometric features is constructed by
noise-, connectivity-, and resolution-insensitive skele-
ton extraction and geometric representation approaches,
thus making our approach insensitive to various sur-
face distributions including similarity transformation,
smoothing, noise addition, simplification, and pose de-
formation. Theoretically, our scheme is more robust
against various attacks than most previous works sum-
marized in Table 1. Furthermore, the experimental re-
sults demonstrate that our approach is better in terms
of matching accuracy than those using geometric or
topological features only in shape matching. A limi-
tation still exists in our approach. Our approach only
works for closed mesh models with manifold connec-
tivity since the geometry contraction in skeleton extrac-
tion requires a well-defined Laplace operator for every
vertex. In the near future, we plan to further extend this
framework to solve the problem of automatic correspon-
dence establishment, which is another interesting and
challenging problem. Moreover, we also plan to apply
our approach to polygon morphing [23] and to motion
retargeting as suggested by [24].
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