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Abstract—Cloud covers which are generally present in op-
tical remote-sensing images limit the usage of acquired images
and increase the difficulty of data analysis. Thus, information
reconstruction of cloud-contaminated images generally plays
an important role in image analysis. This study proposes a
novel method to reconstruct cloud-contaminated information
in multitemporal remote-sensing images. Based on the concept
of utilizing temporal correlation of multitemporal images, we
propose a patch-based information reconstruction algorithm
that spatiotemporally segments a sequence of images into clus-
ters containing several spatially connected components, called
patches, and then clones information from cloud-free and high-
similarity patches to their corresponding cloud-contaminated
patches. Besides, a seam that passes through homogenous regions
is used in information reconstruction to reduce radiometric
inconsistency, and the information cloning is solved using an
optimization process with the determined seam. These processes
enable the proposed method to well reconstruct missing infor-
mation. Qualitative analyses of image sequences acquired by
Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor and
a quantitative analysis of simulated data with various cloud
contamination conditions are conducted to evaluate the proposed
method. The experimental results demonstrate the superiority of
the proposed method to related methods in terms of radiometric
accuracy and consistency, particularly for large clouds in a
heterogeneous landscape.

Index Terms—cloud removal, image reconstruction, Landsat
ETM+, Poisson equation

I. INTRODUCTION

THE primary limitation of passive remote sensing sensors
is their sensitivity to weather conditions during data

acquisition. Land scenes are on average approximately 35%
cloud-covered globally [1], significantly reducing the avail-
ability of cloud-free surface observations. Clouds in remote-
sensing images can be regarded as information for measuring
liquid water, or as contaminations that partially obstruct obser-
vation of landscapes. This study addresses the latter issue in
which clouds obstruct land covers, thereby resulting in missing
data for passive image sensors.

Data analysis, such as classification of land covers, generally
requires a cloud-free image composed of several patches
that are acquired at different times and at different con-
ditions, such as atmospheric conditions, soil moisture, and
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vegetation phenology. These conditions cause the relations
between land-cover classes and pixel intensities to vary over
a data acquisition period. Thus, the approach of replacing
the cloud-contaminated pixels with their corresponding cloud-
free pixels and then linearly adjusting the intensity values of
the replaced pixels has been proven inappropriate when the
conditions of data acquisition change significantly [2]. Lin
et al. [2] proposed a nonlinear scheme instead of linear one
to mathematically formulate the reconstruction problem as a
Poisson equation and then solve the equation using a global
optimization process. In addition, instead of reconstructing
information pixel-by-pixel [3], [4], which may contain ra-
diometric inconsistency, Lin et al. proposed a patch-based
scheme to ease this inconsistency problem. Although this
method can yield good cloud-free results, it is sensitive to
boundary conditions when solving the Poisson equation and
also sensitive to the quality of selected patch.

To address the problems above, we propose a seam determi-
nation approach to select a seam passing through homogenous
regions for providing good boundary conditions in recon-
struction optimization. Besides, by utilizing temporal corre-
lation, a clustering algorithm is proposed to segment a cloud-
contaminated region into several clusters with similar temporal
intensity variations. This segmentation enables the proposed
method to handle clouds in a heterogeneous landscape and
to select suitable cloud-free pixels. Compared with the cloud-
removal methods by previous studies, the proposed method can
yield better cloud-free images in terms of radiometric accuracy
and consistency.

II. RELATED WORK

Information reconstruction of images has become an active
research topic in the fields of remote sensing, computer vision,
and computer graphics because of its practical importance.
Following the categorization suggested in [2], the reconstruc-
tion methods are classified into three categories: inpainting-
based, multispectral-based, and multitemporal-based methods.
In inpainting-based methods, the information is reconstructed
using the techniques of image synthesis and inpainting [5]–
[7], in which the information of cloud-contaminated regions
is synthesized by propagating geometric flows inside such
regions. The inpainting-based methods can yield a visually
plausible result that is suitable for cloud-free visualization.
However, the disregard for radiometric accuracy makes the
results unsuitable for data analysis. Besides, the strategy
of image synthesis generally makes approaches difficult in
handling large clouds and clouds in a heterogeneous landscape.
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In multispectral-based methods, multispectral data are uti-
lized in cloud detection and information restoration [8]–
[12]. Rakwatin et al. [8] proposed to reconstruct the missing
data of Aqua Moderate Resolution Imaging Spectroradiometer
(MODIS) band 6 by using the techniques of histogram match-
ing and least-squares fitting. Histogram matching corrects
the detector-to-detector striping of functional detectors, and
least-squares fitting reconstructs the missing parts based on a
polynomial function derived from the relation between Aqua
MODIS bands 6 and 7. Similarly, Roy et al. [9] introduced
a method that utilizes the information observed by MODIS
to predict Landsat ETM+ images. In general, the fusing of
information from different sensors is constrained by spectral
compatibility and spatial resolution. Although MODIS has
comparable spectral bands with ETM+, it has a coarser spatial
resolution. Feng et al. [10] regarded cloud removal as a
denoising problem. Based on the statistical characteristics of
images, an improved homomorphism filtering is applied to fil-
ter low-frequency components that potentially present clouds.
Similarly, Wang et al. [11] filtered clouds in the infrared band
using wavelet frequency analysis and then reconstructed the
information of cloud-contaminated pixels in the other bands
using a B-spline-based surface repair approach. Zhang et
al. [12] and Pringle et al. [13] also proposed geostatistical
methods, in which the missing information is reconstructed
by kriging or cokriging interpolation techniques. Although
the methods based on the ideas of denoising and intensity
interpolation can effectively reconstruct information with good
results, they tend to experience difficulties in large-region
reconstruction.

Compared with the inpainting-based and multispectral-
based methods, the multitemporal-based methods [3], [4],
[14]–[20], which rely on both temporal and spatial coherences,
cope better with large region reconstruction. In [14], to solve
the scan-line corrector (SLC) failure in Landsat 7 ETM+
sensor, a joint United States Geological Survey Landsat team
proposed a local and linear histogram-matching method to
reconstruct information of data gaps in SLC-off images. This
method performs histogram matching in a moving window
of each missing pixel to derive a rescaling function. This
function is then used to convert the radiometric values of an
input scene into equivalent radiometric values of the gap-filled
scene. This method is simple and can solve numerous missing-
data problems when the input images are of high quality
and have comparable seasonal conditions in data acquisition.
Melgani and Benabdelkader [3], [4] proposed a contextual pre-
diction approach to determine spectrotemporal relationships
between the sequences of acquired images. The spectrotem-
poral relationships are inferred from cloud-free regions in the
neighborhood of cloud-contaminated regions over the available
temporal images. Liew et al. [15] adopted a threshold-based
approach to identify the best cloud-free and non-shadow pixels
in a given region. A cloud-free image is then generated by
stitching or mosaicking the selected cloud-free pixels. Gabarda
and Cristóbal [16] introduced a cloud-removal method based
on image fusion that involves a 1D pseudo-Wigner distribution
transformation and a pixel-wise cloud model. This method can
be regarded as a denoising method and can be used to select

noise-free pixels from images. Helmer and Ruefenacht [17]
utilized the regression tree to detect and predict the intensity
values of cloud-contaminated pixels from other image data that
are acquired at different times. They then applied an improved
histogram matching to match the temporally adjacent images.
Similarly, Jiao et al. [18], Wang et al. [19], and Tseng et
al. [20] adjusted the intensity values of cloud-contaminated
images and their corresponding cloud-free images by first
using the means and the standard deviations of pixel intensity
values and then applying the wavelet-based fusion method to
fuse the boundaries of cloud-contaminated regions. While the
methods above [14]–[20] can yield good results for homoge-
nous regions, it should be noted that these methods based
on histogram matching and data fusion tend to experience
difficulties with clouds in heterogeneous landscapes. Lin et al.
[2] recently proposed an information-cloning algorithm that
selects cloud-free patches using a quality assessment index
and solves the multipatch reconstruction problem using a
global optimization process. Thus, this method can poten-
tially yield good cloud-free results. The proposed method
is inspired by such work [2]; however, there are substantial
differences between our method and Lin et al.’s method.
First, a seam determination approach is proposed to provide
a suitable boundary condition in reconstruction optimization.
Second, a spatiotemporal segmentation approach is proposed
for cloud-free and high-similarity patch selection. Third, the
optimization is refined to avoid the propagation of error to the
cloud-contaminated region. Because of these differences, the
proposed method can yield better cloud-free results in terms
of radiometric accuracy and consistency.

III. OVERVIEW OF PROPOSED SCHEME

Figure 1 shows the workflow of proposed information
reconstruction scheme, which consists of six main steps in-
cluding cloud detection, image intensity normalization, multi-
temporal image segmentation, image quality assessment, seam
determination, and information reconstruction. In the proposed
scheme, the method proposed by Hagolle et al. [21] is first
adopted to detect clouds in the input images, and then a
simple user interface with the functions of selection and
erasion is provided to manually refine the detected results. In
the subsequent step, an image intensity normalization process
is performed to achieve consistency in the intensity range
of input images. Thereafter, the pixels of input images are
partitioned into several clusters with similar temporal intensity
variations, and then sorted according to image similarity and
amount of clouds. In the seam determination step, an opti-
mization process based on dynamic programming is performed
to search for an optimal seam for each cloud-contaminated
region. The proposed information reconstruction algorithm is
then performed to recover the missing information of a cloud-
contaminated region by solving a Poisson equation with the
obtained seam as boundary conditions. The spatiotemporal
segmentation is described in Section IV-C, and the seam
determination and information reconstruction are described in
Sections IV-E and IV-F, respectively.
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Fig. 1. Workflow of proposed information reconstruction method. The proposed method consists of six steps including cloud detection, image intensity
normalization, multitemporal image segmentation, image quality assessment, seam determination, and information reconstruction. The inputs and outputs of
the proposed method are cloud-contaminated and cloud-free images.
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Fig. 2. Illustration of information reconstruction. The information of cloud-
contaminated region Γ in target image IT is reconstructed using a selected
patch in reference image IR with the aid of the gradient field V of the selected
patch.

IV. INFORMATION RECONSTRUCTION OF
CLOUD-CONTAMINATED REGIONS

A. Review of Information Cloning Technique

The proposed method is inspired by the concept of image
editing [22] and is an extension of the information cloning
method [2]. Thus, this section begins with a brief introduction
of the information cloning technique. In [2], the information
reconstruction problem is mathematically formulated as a
Poisson equation and then solved using global optimization.
Given a cloud-contaminated image, which is called target
image and denoted as IT , and a set of corresponding im-
ages that are acquired in the same position but on different
dates, which are called reference images and denoted as
{IR1 , · · · , IRn}, the information of cloud-contaminated pixels
in target image IT is reconstructed by utilizing the information
of its corresponding reference images {IR1

, · · · , IRn
}.

As illustrated in Figure 2, the cloud-contaminated region
in target image is denoted by Γ, and the cloud boundary
(or called seam) is denoted by ∂Γ. Let f be an unknown
image intensity function defined over Γ, f∗ be the function
defined over the target image minus Γ , and V be a vector

field defined as the gradient of selected patches in reference
images for guiding information reconstruction. To obtain the
solution for unknown function f , the problem is formulated
as an optimization equation with the boundary condition
f |∂Γ= f∗ |∂Γ as follows:

min
f

∫∫
Γ

‖∇f −V‖2 with f |∂Γ = f∗|∂Γ, (1)

where ∇ =
(

∂
∂x
, ∂
∂y

)
is gradient operator. The solution to (1)

is the unique solution of the following Poisson equation with
Dirichlet boundary condition:

∆f = divVover Γ with f |∂Γ = f∗|∂Γ, (2)

where ∆ = ∂2

∂x2
+ ∂2

∂y2
is Laplacian operator and divV =

∂v1

∂x
+

∂v2

∂y
represents divergence of the vector field V = (v1, v2).

Equations (1) and (2) are the fundamental formulas of the
information reconstruction method in [2], which aim to derive
the result f with a gradient that is as close to the guidance
vector field V (i.e., the details of the selected patches in
reference images) as possible under the boundary condition
f |∂Γ = f∗|∂Γ. This boundary condition is used to enforce
the seam ∂Γ between the scalar functions f and f∗ to have
radiometric consistency in reconstruction optimization. The
minimization indicates that the scalar function f∗ and the
obtained function f have the same boundary intensity and
the gradient of the obtained function f in the L2-norm is
close to the gradient field V of the selected patches. Therefore,
this minimization has a good probability of consistently and
accurately cloning the details of selected patches to the cloud-
contaminated regions when a suitable boundary condition and
an accurate gradient field are given. In this study, to improve
the quality of information reconstruction, a spatiotemporal
image segmentation approach is proposed to select cloud-
free and high-quality patches and to provide an accurate
vector field V (described in Section IV-C). Moreover, a seam
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Fig. 3. Example of image intensity normalization. Left: target image; middle:
reference image; right: result of image intensity normalization.

determination approach is proposed to select a seam that
provide a good boundary condition in the optimization process
(described in Section IV-E), and an intensity constraint is
included in the optimization of information reconstruction to
refine error propagations (described in Section IV-F).

B. Image Intensity Normalization

As a preprocessing step, image intensity normalization is
performed to achieve consistency in the mean and standard
deviation of the intensity values of target and reference images.
In this process, each reference image with the mean and
standard deviation of intensity values [µ(IR), σ(IR)] is linearly
transformed into the target image with those of intensity values
[µ(IT ), σ(IT )]. The normalization is formulated as follows:

IR(i, j) =
(
IR(i, j)− µ(IR)

)
× σ(IT )

σ(IR)
+ µ(IT ) (3)

The cloud-contaminated pixels are excluded in the calcula-
tion of Equation (3), and such image normalization process can
ease the difficulty caused by inconsistent intensity dynamic
ranges of the input images. As shown in Figure 3, the dynamic
range of the reference image (middle figure) is altered to make
it closer to that of the target image (left figure), consequently
reducing the difficulty in performing the subsequent steps of
information reconstruction. Note that a biased correction may
happen since the cloud-contaminated pixels are excluded in
the calculation of image normalization. Fortunately, the bias
is insignificant for most cases since the images are acquired
by the same sensor and at the same position. In addition, the
bias is eased by considering the cloud cover rate in the cloud-
free patch selection (Section IV-D), and the bias is also eased
by the Dirichlet boundary condition f |∂Γ = f∗|∂Γ in Poisson
equation.

C. Spatiotemporal Segmentation

To select a suitable guidance vector field (i.e., V in (1))
and to handle cloud covers in a heterogeneous landscape, a
spatiotemporal segmentation is proposed to segment the input
images into several patches with similar temporal intensity
variations. As shown in Figure 4, a temporal variation map
Mvar is generated first according to pixel intensity variations
during a defined period. The temporal variation of pixel (i, j)
is defined as the average intensity variation in the sequence of
target and reference images and is formulated as follows:
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Fig. 4. Illustration of spatiotemporal segmentation. (a) Input multitemporal
images displayed using false color (NIR-Red-Green). (b) Temporal variation
of pixel intensity values. (c) Generated temporal variation map. The variations
in the near infrared, red, and green spectral bans are visualized by RGB colors.
(d) Segmentation result using k = 12. Each cluster is visualized by a color.

Mvar(i, j) =

Rn∑
k=1


(
Ik+1(i, j)− Ik(i, j)

)2
NumDay(Ik+1, Ik)

 , (4)

where NumDay(Ik+1, Ik) is a function that returns the num-
ber of days between the acquisition dates of two consecutive
images Ik+1 and Ik that are cloud-free at the position (i, j),
and Rn +1 images, including the reference and target images,
are used in the calculation. Note that the cloud-contaminated
pixels are excluded in the calculation of Equation (4) since
their information is missing, and the intensity variation is
normalized by the number of days between the acquisition
dates instead of the number of available images because of the
inconsistent positions of cloud-free pixels in temporal domain.

In the subsequent step, the temporal variation map is par-
titioned into several clusters with similar temporal variations,
indicating that each cluster probably belongs to a landscape.
Any clustering technique can be used here. For simplicity,
the efficient and commonly used k-means clustering method
[23] is adopted. With an initial set of k means, the clustering
method adopts an iterative refinement strategy to group the
data into k clusters {s1, · · · , sk} by minimizing the within-
cluster sum of squares as follows:

arg min
s

k∑
i=1

∑
xj∈si

‖xj − ui‖2, (5)

where ui is the mean of pixel intensity values in class si.
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Fig. 5. Result of quality assessment. Left: reference images sorted according
to RMSE and CCR. The images captured on June 23, 2000 and June 26, 2001
are filtered because of the CCR constraint.

Figure 4 shows a result of temporal variation map generation
and clustering. Obviously, the croplands have a high temporal
variation and the mountain areas have a low temporal varia-
tion, meeting the expectation. In addition, different landscapes
are separated into different groups after applying the clustering
algorithm to the variation map, enabling the proposed method
to handle clouds in a heterogeneous landscape. Note that
always obtaining accurate clustering is difficult and incorrect
clustering may happen. Fortunately, the proposed method does
not require a perfect clustering and the reconstruction quality
is moderately sensitive to the clustering accuracy. It is because
that the clustering result is used only in the selection of cloud-
free patches and guidance vector field.

D. Image Quality Assessment

After the clustering, the pixels of target and reference
images are grouped into several spatial fragmented clusters,
and each cluster contains several connected components,
called patches. For each patch within the cloud-contaminated
region, a cloud-free high-similarity patch is selected from the
reference image by utilizing quality assessment. In this study,
the root mean square error (RMSE) is used to estimate patch
quality and to select a cloning patch from the reference images.

The RMSE is defined as

√
m∑
i=1

(pITi − p
IR
i )

2
/m, where m is

the total number of pixels, and pITi and pIRi are the intensity
values of i-th pixel in the target image IT and the reference
image IR, respectively. To consider heterogeneous landscapes,
the RMSE index between the target and reference images is
calculated for only the pixels that belong to a cluster. In this
manner, a suitable cloning patch can be selected by using
only the pixels that belong to the cluster of this patch in
quality estimation. In addition, the cloud cover rate (CCR)
is considered in the patch selection. If the CCR is greater
than a defined threshold (set to 80% for all experiments), the

High 

Low 

Fig. 6. Illustration of seam determination. From left to right: original image
containing clouds, search space marked by red, cost map visualized by color
ranging from blue (lowest cost) to red (highest cost), and obtained seam (red
curve) displayed in the cost map and the original image.

reference image will not be selected as a candidate in infor-
mation reconstruction. As shown in Figure 5, the reference
image acquired on May 28, 2002, which has the best quality,
is selected as the information cloning patch. The CCRs of the
reference images acquired on June 23, 2000 and June 26, 2001
are both greater than the defined threshold, and thus, these two
images are not selected as candidates.

E. Seam Determination

The boundary condition in Equation (1) significantly affects
the quality of inward interpolation as well as information
reconstruction. In this study, instead of using the detected
cloud boundary [2], a seam that passes though homogenous
regions is used. It is because non-homogeneous regions con-
taining high-gradient content generally have low consistency
in pixel intensity and gradient of multi-temporal images. Using
a seam passing through nonhomogeneous regions as boundary
conditions in reconstruction may result in inaccurate inward
interpolation and information reconstruction.

The proposed seam determination approach consists of three
steps: search space determination, cost map generation, and
optimal seam determination, as shown in Figure 6. In addition
to the enforcement of passing though homogenous regions,
the seam must be close to the cloud boundary. Moreover,
the extreme concaves are excluded from the search space to
simplify seam determination. To meet the requirements above,
the morphological operations, namely, dilation and erosion, are
utilized to define a search space without extreme concaves.
The search space is determined by first applying the dilation
operator to the cloud-contaminated region, and then applying
the erosion operator to the dilated region using a 3×3 structure
element. The eroded region is defined as the search space.
The number of dilations and erosions is set to 10, indicating
that the search space has a width of approximately 10 pixels.
Cloud-contaminated pixels are excluded from the search space,
and the cloning patches for the search space are selected
using the quality assessment mentioned in Section IV-D. The
search space is then embedded into a regular, rectangular
space to facilitate the calculation of seam optimization. Such
embedding is achieved by iteratively stretching and elongating
the eroded one-pixel-width circles to fit a rectangle, as shown
in Figure 7. In the stretch step, the eroded one-pixel-width
circles are stretched to lines with a cutting. In the elongation,
the stretched lines are elongated to fit a rectangle, and thus,
several empty pixels exist. These empty pixels are filled by
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Fig. 7. Illustration of search space embedding. Left: defined search space
in image space. Right: results of one-pixel-width circles stretching (top),
elongating (middle), and seam determination (bottom).

linearly interpolating their neighboring pixels in the one-pixel-
width circle. A result of search space embedding is shown
in the middle figure of Figure 7. The regular search space
facilitates the calculation of seam determination.

In the second step, a cost map defined over the search space
is generated for seam optimization. The seam is proposed to
pass through homogenous regions in the target image and to
pass regions that have similar gradient magnitudes in the target
and reference images. Thus, the cost map is defined as follows:

CostM =
∑

(i,j)∈ω

(
‖∇IT (i, j)‖2+‖∇IT (i, j)−∇IR(i, j)‖2

)
, (6)

where ∇IT (i, j) and ∇IR(i, j) represent the gradients of the
target and reference images, respectively, at position (i, j)
and ω is the search space defined in the first step. In
(6), the first part (i.e., ‖∇IT (i, j)‖2) can force the seam to
pass through homogenous regions, and the second part (i.e.,
‖∇IT (i, j)−∇IR(i, j)‖2) can force the seam to pass regions
that have similar gradient magnitude in the target and reference
images.

In the last step, the optimal seam is determined using
dynamic programming with the aid of cost map. By viewing
pixel intensity values in the cost map as the costs for a seam
to pass through, the minimum cost seam passing through the
low-cost regions is obtained by implementing the following
procedures. The cumulative minimum cost function Cmin(i, j)
is defined as the cost to reach pixel (i, j) in the search space,
and the cumulative minimum error Cmin for all possible seams
are calculated as follows:

Cmin(i, j) = Cost(i, j) +Min
(
Cmin(i− 1, j + 1),

Cmin(i− 1, j), Cmin(i− 1, j − 1)
)

(7)

The minimum value of the last row in Cmin indicates the
end of the minimum cost seam. Thus, the optimal seam and
the best boundary condition in information reconstruction can
be obtained by tracing back to the first row. The obtained
seam shown in Figure 7 is the global optimal seam that passes
through the low-cost pixels.

F. Information Reconstruction

While the method proposed by Lin et al. [2] can yield good
results for most cases, it should be noted that the process
of interpolating inward prorogate errors from the boundaries

to the cloud-contaminated region may lead to an unnatural
result, especially for a reconstruction with a high-cost seam.
To solve such problem, a pixel intensity constraint is included
in the optimization to balance fitting the guidance vector field
V and linearly replacing pixel intensity according to that of
the selected cloning patch. Including the intensity constraint,
the optimization in Equation (1) is reformulated as follows:

min
f

∫∫
Γ

(
‖∇f −V‖2+ (f − f ′cp)

2 withf |∂Γ = f∗|∂Γ
)
, (8)

where fcp is the intensity function defined over the selected
cloning patch and f ′cp is the intensity adjustment of fcp , which
can be calculated using Equation (3). In the implementation,
Equation (8) is discretized on a pixel grid. Let Np be the pixel
set of the 4-connected neighbors for a pixel p in target image
IT and < p, q > be denoted as a pixel pair such that pixel q
is one of the 4-connected neighbors of pixel p (i.e., q ∈ Np).
Let f(p) be the value of the image function f at position/pixel
p. The task is to compute the pixel intensity values in the
cloud-contaminated region Γ. The discretization of Equation
(8) yields the following discrete optimization equation:

min
f

∑
<p,q>∩Γ 6=0

⌊(
f(p)− f(q)− vpq

)2
+
(
f(p)− f ′(p)

)2⌋
withf(s) = f∗(s)for alls ∈ ∂Γ, (9)

where vpq = IR(p)− IR(q) , which is the directional gradient
of the reference image at position p. According to Equation
(9), the following equation can be generalized:

|Np|f(p)−
∑

q∈Np∩Γ

f(q)

=
∑

q∈Np∩∂Γ

f∗(q) +
∑
q∈Np

vpq − |f(p)− f ′(p)|

for all p ∈ Γ, (10)

where |Np| is the number of neighbors q in Np. Equation
(10) is iteratively solved until the unknown function f is con-
verged. As mentioned above, several patches in the reference
images are used to reconstruct the information of a cloud-
contaminated region. To generate a smooth guidance field,
the guidance vectors on the patch boundary are calculated by
averaging the gradients of neighboring patches as follows:

vpq =
⌊(
PRi

(p)− PRi
(q)
)

+
(
PRj

(p)− PRj
(q)
)⌋
/2, (11)

where PRi
and PRj

represent the neighboring patches in the
reference images IRi

and IRj
, respectively.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed algorithms were tested on a desktop PC with
3.0 GHz CPU and 4GB memory. For a dataset containing
twenty reference images of 900x900 resolution and one target
image with 100000 cloud-contaminated pixels, the average
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TABLE I
LANDSAT ETM+ ACQUISITIONS FOR THE STUDY SITES.

Site, country Site location Path-row B Acquisition date CCR
(latitude, longitude) coordinates (%)

Colorado, USA 37.442N,102.807E 32/34 1999/07 - 2003/05 6%
Tel Aviv, Israel 31.952N, 35.892E 174/38 1999/11 - 2003/05 25%

Taichung, Taiwan 24.195N, 120.658E 118/43 2003/01- 2003/03 10%
Taipei, Taiwan 25.035N,121.494E 117/43 1999/08 - 2003/05 28%
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Fig. 8. Clustering result. Top: target image with a simulated cloud (left) and RMSE of the reconstruction results using various values of parameter k in
clustering (right). The red curve is the polynomial fitting curve. Middle: clustering results using different values of k, including k = 2, 10, 20, 50, and 100
(from left to right). The partitioned clusters are visualized using different colors. Bottom: maps of reconstruction errors. The error is visualized using colors
ranging from blue (lowest error; RMSE = 0) to red (highest error; RMSE = 30).

computation time for image intensity normalization is 1.2 sec-
onds, for multitemporal image segmentation is 340.5 seconds,
for seam determination is 1.9 seconds, and for reconstruction
optimization is 256.2 seconds. In the experiments, Landsat-
7 ETM+ images with various landscapes were used to test
the feasibility and performance of the proposed method. For
simplicity, only the 30-meter blue band (0.45-0.52 micron),
green band (0.53-0.61 micron), red band (0.63-0.69 micron),
and near-infrared band (0.78-0.90 micron) of ETM+ im-
ages were used only; the mid-infrared, thermal infrared, and
panchromatic bands were not used. Four study sites, Colorado,
Tel Aviv, Taichung, and Taipei, were selected, as shown in
Table 1. The Colorado and Taichung Landsat acquisitions
that have only a few cloud covers are suitable for analyzing
parameter setting and conducting quantitative analyses. The
Taipei and Tel Aviv Landsat acquisitions that contain approx-
imately 28% cloud cover on average are suitable for testing

the feasibility of the proposed method. In the Taipei and Tel
Aviv Landsat acquisitions, the clouds and cloud shadows were
identified using the unsupervised detection method proposed
by Hagolle et al. [21]. Then, the detection was manually
refined using a simple user interface with selection and erasion
operations. The RMSE and average difference (AD) were
used to estimate the quality of information reconstruction.

The RMSE is defined as

√
N∑
i=1

(fRec
i − fOri

i )
2
/N where N

is the total number of simulated cloud-contaminated pixels,
and fRec

i and fOri
i are the reconstruction result and actual

value (i.e., ground truth) of i-th pixel, respectively. A larger
RMSE indicates a larger reconstruction error. The AD index

is defined as
N∑
i=1

(fRec
i − fOri

i )
/
N and is used to evaluate

either the underestimation or overestimation of information
reconstruction. A positive AD index indicates overestimation
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Replacement result Our result 

Target image  (2002/05/28) 

1999/08/08 2001/05/25 

2002/10/03 2002/12/06 

Fig. 9. Results of information reconstruction. Top: target image (left) acquired near Taipei City on May 28, 2002 and reference images (right). Middle:
results of cloud detection, spatiotemporal segmentation, cloning patch selection (each reference image is represented by a color), and obtained seam. Bottom:
patch replacement result and our result.

TABLE II
ACCURACY OF RECONSTRUCTION RESULTS GENERATED USING THE PROPOSED SCHEME WITH THE CLOUD BOUNDARY (METHOD A) AND THE OPTIMAL

SEAM (METHOD A’) AS BOUNDARY CONDITIONS. THE TEST DATA IS SHOWN IN FIGURE 12.

Quality Index Red band Green band Blue band NIR band
RMSE AD RMSE AD RMSE AD RMSE AD

RA
MethodA 4.22 -1.62 2.69 -1.14 2.44 -0.90 2.03 -0.24
MethodA’ 4.04 -0.87 2.58 -0.83 2.40 -0.79 1.94 0.01

RB
MethodA 13.75 1.81 8.49 0.60 7.37 0.65 7.86 -2.57
MethodA’ 13.03 1.62 8.03 0.31 6.97 0.47 7.59 -2.47
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Replacement result Our result 

Target image (2001/06/26) 

1999/08/08 2000/11/14 

2000/12/16 2003/05/31 

Fig. 10. Results of information reconstruction. Top: target image (left) acquired near Taipei City on June 26, 2001 and reference images (right). Middle:
results of cloud detection, spatiotemporal segmentation, cloning patch selection, and obtained seam. Bottom: patch replacement result and our result.

TABLE III
ACCURACY OF RECONSTRUCTION RESULTS GENERATED USING THE PROPOSED SCHEME WITHOUT (METHOD B) AND WITH (METHOD B’)

SPATIOTEMPORAL SEGMENTATION (k = 20). THE TEST DATA IS SHOWN IN FIGURE 8.

Quality Index Red band Green band Bule band NIR band
RMSE AD RMSE AD RMSE AD RMSE AD

MethodB 21.01 -0.90 13.34 -0.39 10.58 -0.35 9.22 2.33
MethodB’ 13.62 0.58 9.02 0.57 6.91 -0.04 8.97 1.71
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Replacement  result Our result 

Target image (2002/04/09) 

2000/08/25 2002/01/19 

2002/07/14 2002/10/18 

Fig. 11. Results of information reconstruction. Top: target image (left) acquired near Tel Aviv on April 09, 2002 and reference images (right). Middle: results
of cloud detection, spatiotemporal segmentation, cloning patch selection, and seam determination. Bottom: patch replacement result and our result.

and a negative value indicates underestimation.

A. Parameter setting
The number of groups used in the k-means clustering is the

only parameter that needs to be set in the proposed method.
To test the sensitivity of the reconstruction results to such
parameter and to find a suitable value, our method was tested
using various parameter values on a dataset that contains
a simulated cloud, as shown in Figure 8. Parameter k is
determined by comparing the reconstruction results that use
variousis determined by comparing the reconstruction results
that use various k values. In the experiment, RMSE was
used to estimate the reconstruction quality. From the RMSE
statistics and the polynomial fitting curve (red curve) shown
in Figure 8, a small parameter k (i.e., undersegmentation)
decreases reconstruction accuracy; however, a larger parameter

k (i.e., oversegmentation) does not necessarily yield better
results. The RMSE curve is generally convergent when k is
greater than 20, indicating that indicating that k = 20 is a
suitable setting for most cases.

B. Information reconstruction results
Figures 9, 10, and 11 illustrate how the proposed method

works for reconstruction of cloud-contaminated images. In
Figure 9, the target image containing mountains was acquired
near Taipei City on May 28, 2002, and four reference im-
ages whose acquisition dates are close to that of the target
image are selected to reconstruct information. The results of
cloud detection, spatiotemporal segmentation, cloning patch
selection, and seam determination are shown in the middle
section of Figure 9. Compared with the patch replacement, our
method can seamlessly clone the details of multiple patches to
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the corresponding cloud-contaminated regions, indicating that
the radiometric inconsistency is greatly eased. In Figures 10
and 11, the target images that contain urban areas and rivers
were acquired near Taipei City on June 26, 2001 and near Tel
Aviv on April 09, 2002, respectively. The ability of radiometric
consistent reconstruction was also demonstrated in these two
examples. Note that to select thin clouds which sometimes
occur on the cloud boundaries, a dilation operation with 5
structure element is applied to the detected clouds. Therefore,
the selected cloud-contaminated regions in Figures 9, 10,
and 11 are partially larger than the real cloud-contaminated
regions. This problem might be solved using the state-of-the-
art cloud detection method.

C. Performance of the proposed approaches

In this study, a seam optimization approach is proposed to
select boundary conditions for information reconstruction and
a spatiotemporal segmentation algorithm is proposed to select
cloud-free cloning patches. To demonstrate the performance of
these two approaches, the proposed scheme without (denoted
as Method A) and with (Method A’) the optimal seam, and
the proposed scheme without (Method B) and with (Method
B’) the spatiotemporal segmentation were compared. Colorado
Landsat acquisitions that contain a simulated cloud were tested
for the comparisons. In this experiment, a cloud is simulated
by partly obscuring a cloud-free image of the acquisitions, as
shown in Figures 8 and 12, and the reconstructed images are
compared with the original cloud-free image by using RMSE
and AD measurements. The comparison results are shown in
Tables II and III. From the RMSE and AD indices, these
two approaches improve reconstruction quality because of the
use of better cloning seam and cloning patches. Based on
the visual comparisons, these two approaches also improve
radiometric consistency. In Table II, as expected, the quality
of homogeneous region (denoted by RA) reconstruction was
better than that of the non-homogenous region (denoted by RB)
because the non-homogenous region contains larger temporal
variations.

D. Information reconstruction of simulated cloud-
contaminated images

Reconstruction of simulated cloud-contaminated pixels was
conducted to quantify reconstruction accuracy and to compare
our method with the related methods. In this experiment, an
image that contains three simulated regions with different
cloud contaminations was tested, as shown in Figure 13. Sev-
eral related methods, including patch replacement, intensity
adjustment suggested in [15]–[20], histogram matching [14],
information cloning method proposed by Lin et al. [2], and the
proposed method were evaluated. To ensure fair comparison,
only one reference image was used, and thus, the process of
spatiotemporal segmentation is omitted from our method. In
the method of intensity adjustment and histogram matching,
information reconstruction is achieved by adjusting pixel in-
tensity values according to a transformation function that is
determined using mean and standard deviation of intensity val-
ues or histogram matching. However, discontinuity may occur

Target Image (2000.08.22) 

       RB 

(Non-homogeneous Region) 

RA 

(Homogeneous region) 

Reference Image (2000.07.05) 

Fig. 12. Left: target image that contains two simulated cloud-contaminated
regions, namely, homogeneous region RA and non-homogeneous region
RB. The acquisition date is August 22, 2000. Right: reference image. The
acquisition date is July 5, 2000.

Target Image Reference Image 

Area 1 

Area 3 

Area 2 

Fig. 13. Left: target image that contains three simulated regions with different
cloud contaminations. Area 1 contains mountains; Area 2 contains mountains
and urban areas; Area 3 contains mountains, urban areas, and croplands. The
acquisition date is March 3, 2003. Right: reference image. The acquisition
date is January 30, 2003.
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Fig. 14. Accuracy of reconstruction results generated using the methods of
patch replacement, intensity adjustment, method proposed by USGS [14], Lin
et al.’s method [2], and our method without spatiotemporal segmentation. The
test data is shown in Figure 13.
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on the cloud boundaries even though a smoothing process is
applied. In [2], the radiometric inconsistency is eased by error
propagation. However, the reconstruction quality is sensitive
to boundary conditions and selected cloning patches. In this
study, seam optimization and spatiotemporal segmentation are
adopted to optimize information reconstruction. Therefore, as
can be seen in Figures 14, our result is closer to the actual
image, i.e., the ground truth, compared with the results gener-
ated by related methods, indicating that better reconstructions
are obtained.

VI. CONCLUSIONS AND FUTURE WORK

In this study, a novel information reconstruction method
for cloud-contaminated images was introduced. Using tem-
poral correlation, multi-temporal images were segmented into
several patches that have similar temporal variations. Patches
in the reference images were then sorted using the RMSE
index to select cloning patches, and information of se-
lected patches was seamlessly cloned to corresponding cloud-
contaminated patches. The multi-patch information reconstruc-
tion was solved using an optimization process with the optimal
seam. These processes enable the proposed method to well
reconstruct information of cloud-contaminated regions. The
major improvement is that our method makes better use of
appropriate spatiotemporal information to reconstruct informa-
tion, and thus, our method can potentially yield better results
in terms of radiometric accuracy and consistency compared
with related methods. Experiments on the sequences of multi-
temporal images acquired using a Landsat-7 ETM+ sensor
demonstrate that the proposed method can process clouds in
various landscapes. In addition, quantitative and qualitative
analyses on a simulated data with different cloud contami-
nation conditions show that the method is superior to related
cloud-removal methods. However, the proposed method cannot
accurately reconstruct information when land covers change
significantly over a short period, which is a limitation of
multitemporal-based methods. In the future, a more com-
prehensive approach that fills the gaps in Landsat-7 ETM+
SLC-off and cloud-contaminated images, and automatic cloud
detection and reconstruction approaches for thin clouds are
being planned for development.
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[16] S. Gabarda and G. Cristóbal, “Cloud covering denoising through image
fusion,” Image and Vision Computing, vol. 25, no. 5, pp. 523–530, 2007.

[17] E. Helmer and B. Ruefenacht, “Cloud-free satellite image mosaics with
regression trees and histogram matching,” Photogrammetric Engineering
& Remote Sensing, vol. 71, no. 9, pp. 1079–1089, 2005.

[18] Q. Jiao, W. Luo, X. Liu, and B. Zhang, “Information reconstruction in
the cloud removing area based on multi-temporal chris images,” in Pro-
ceeding of Remote Sensing and GIS Data Processing and Applications,
vol. 6790, 2007, p. 679029.

[19] B. Wang, A. Ono, K. Muramatsu, and N. Fujiwara, “Automated detection
and removal of clouds and their shadows from landsat tm images,” IEICE
transactions on information and systems, vol. 82, no. 2, pp. 453–460,
1999.

[20] D.-C. Tseng, H.-T. Tseng, and C.-L. Chien, “Automatic cloud removal
from multi-temporal spot images,” Applied Mathematics and Computa-
tion, vol. 205, no. 2, pp. 584–600, 2008.

[21] O. Hagolle, M. Huc, D. Pascual, and G. Dedieu, “A multi-temporal
method for cloud detection, applied to formosat-2, venµs, landsat and
sentinel-2 images,” Remote Sensing of Environment, vol. 114, no. 8, pp.
1747–1755, 2010.
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