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Abstract 

Light Detection and Ranging (LiDAR) sensors with the ability to acquire high spatial 

resolution and accurate 3D data over a large area are increasingly utilized in the fields 

of remote sensing and surveying. The classification of airborne LiDAR data is a 

fundamental and critical step in related applications. The features used in the 

separation of different objects are important for successful classification. 

Eigen-features from a covariance matrix of a point set with the sample mean are 

commonly used geometric features that can describe the local geometric 

characteristics of a point cloud and indicate whether the local geometry is linear, 

planar, or spherical. However, eigen-features calculated by the principal component 

analysis of a covariance matrix are sensitive to LiDAR data with inherent noise and 

incomplete shapes because of the non-robust statistical analysis. To obtain reliable 

eigen-features from LiDAR data and to improve classification accuracy, we introduce 

a method of analyzing local geometric characteristics of a point cloud by using a 

weighted covariance matrix with a geometric median rather than the standard 

covariance matrix and the sample mean which are sensitive to point distribution. Each 

point in the neighborhood of a point is assigned a weight to represent its spatial 

contribution in the weighted principal component analysis and to estimate the 

geometric median which can be regarded as a localized center of a shape. In the 



experiments, qualitative and quantitative analyses on airborne LiDAR data and 

simulated point clouds show a clear improvement of the proposed method compared 

with the standard eigen-features. The classification accuracy is improved by 1.6% to 

4.5% using a supervised classifier. 
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1. Introduction 

Classification is the process of converting raw data into meaningful, useful, and 

understandable information (Mountrakis et al., 2011). Although researchers have 

proposed many classification methods, LiDAR point cloud classification is not fully 

solved because of the similar characteristics possessed by different objects. Therefore, 

many researchers devoted their efforts in automatic point cloud classification. In 

related studies, LiDAR is used to separate ground surface from non-ground objects 

(Lohmann et al., 2000). Non-ground objects are further classified into buildings 

(Axelsson, 1999), roads (Choi et al., 2008), and vegetation (Cobby et al., 2003). 

Several researchers also combine LiDAR data with multispectral images in their 

classification (Bork and Su, 2007; Secord and Zakhor, 2007), and LiDAR intensity is 

used in feature extraction and land cover classification (Flood, 2001; Hui et al., 2008). 

In the classification of LiDAR data, various techniques were proposed, including 

unsupervised classification (Haala and Brenner, 1999; Vosselman, 2000) and 

supervised classification, such as Bayesian networks (Stassopoulou et al., 2000), 

decision trees (Antonarakis et al., 2008), and support vector machines (SVMs) 

(Charaniya et al., 2004; Lodha et al., 2006; Secord and Zakhor, 2007; Samadzadegan 

et al, 2010; Mallet et al., 2011). In this study, the SVM classifier is used to evaluate 

the generated eigen-features. In SVMs, each point is transformed into a 



high-dimensional space which is composed of a set of defined features. These features 

are derived from the LiDAR point clouds. Some features are defined based on 

waveform considerations (Gross et al., 2007; Wagner et al., 2008; Rutzinger et al., 

2008), and some features are related to the geometric information of point clouds, 

such as surface slopes, point heights, and local geometric shapes (Charaniya et al., 

2004; Lodha et al., 2006; Secord and Zakhor, 2007; Samadzadegan et al, 2010; Mallet 

et al., 2011). Among these features, eigen-features computed from eigenvalues of the 

covariance matrix of a local point set are the commonly used 3D geometric 

descriptors. Eigen-features and eigenvalues can be efficiently obtained by principal 

component analysis (PCA) (Gross et al., 2007; Mallet et al., 2011; Brodu and Lague, 

2012; Gressin et al., 2013), which is a mathematical tool widely used in numerous 

studies such as point cloud segmentation and reconstruction (Sampath et al., 2010). 

Although PCA is a powerful tool in revealing geometric information of 3D point data, 

the method suffers from difficulties caused by outliers and the incomplete surface 

sampling nature of airborne LiDAR point clouds because of the non-robust statistical 

analysis. In this study, a eigen-feature analysis based on weighted covariance matrix 

and geometric median is introduced to alleviate these difficulties and to extract 

reliable eigen-features from point clouds. The geometric median is known as a robust 

center of an arbitrary point set and has the prominent property of sampling 

insensitivity (Daszykowski et al., 2007). To obtain the geometric median and the 

weighed covariance matrix, each point in a local point set is assigned a weight to 

represent its spatial contribution, i.e., the surface occupied by that point, in the 

weighted PCA. A possible solution in calculating the area of a point occupied surface 

is through the use of Voronoi diagram. The area of a point occupied surface can be 

defined as the area of a Voronoi cell in a projection plane. However, this definition 

suffers computational sensitivity in calculating the projection plane and constructing 



the Voronoi diagram for unorganized and noisy point clouds. From the observation 

that the area of a point occupied surface is inversely proportional to the point density, 

the point weight is defined as a function of point density that is computationally much 

more efficient. The obtained weights are then used with the geometric median in 

calculating the covariance matrix and in extracting the eigen-features.  

The main contribution of this study is the introduction of a method to extract 

eigen-features from a local point set by using the weighted PCA with the geometric 

median, which has better performance in classification accuracy then that using the 

standard eigen-features. The remainder of this paper is organized as follows. Section 2 

introduces the proposed approaches. Section 3 discusses the experimental results, and 

Section 4 presents the conclusions and future work. 

2. Methodology 

This paper introduces an improved eigen-feature analysis for LiDAR point cloud 

classification. SVM classification and eigen-feature analysis are briefly introduced in 

Sections 2.1 and 2.2, respectively. The proposed approaches on the weighted 

covariance matrix and eigen-feature analysis are then described in Section 2.3. 

2.1 SVM classification 

SVMs were first introduced by Vapnik (1995) for classification and have 

recently become an intensive research topic. SVMs were originally designed for 

two-class linear classifications. The basic idea is to determine the maximal margin of 

the input samples, where margin means the minimal distance from the separating 

hyperplane to the closest samples of classes. The middle of the margin is the optimal 

separating hyperplane, and the samples closest to the hyperplane are called support 

vectors. Given that the determined hyperplane cannot separate the samples well, the 



linear SVM is extended to a non-linear SVM by transforming the problem into a 

feature space using a set of nonlinear basis functions, where the samples are separated 

as clearly as possible. In doing so, the algorithm avoids the process of determining the 

optimal separating hyperplane in the feature space. A kernel representation is used 

instead, in which the solution is written as a weighted sum of the values of a kernel 

function evaluated at the support vectors. In addition, only a few training samples are 

required in the SVM algorithm. These properties make SVMs suited to 

high-dimensional classification problems in the field of remote sensing. 

Given a set of training points  n

kkk yxA 1,  , where n represents the number of 

points, ix  is the training sample, and  iy  is the corresponding class label. The 

decision function can be found by solving the following optimization equation: 
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where i  is the Lagrange coefficient, C is the parameter that controls the trade-off 

between the training error and the margin, and  ji xxK ,   is the transformation kernel 

function. The effectiveness of SVM is dependent on the margin parameter C, the 

selection of the kernel function, and the parameters in the kernel function. The design 

and selection of a kernel is difficult without sufficient priori knowledge of the 

classified targets in the point clouds (Mallet et al., 2011). Therefore, the Gaussian 

kernel that contains only one parameter is adopted, that is, 

    2
exp),( jiji xxkxxK   for  0k .           (3) 

The best combination of the parameters C and k  is generally decided through 

cross validation, that is, the parameters with the best cross-validation accuracy are 

selected. The final SVM model is trained on a training dataset by using the selected 



parameters. The model is then used in testing and classifying point clouds.  

The SVM classifier assigns a label to each point based on its feature 

representation. The features are computed from the LiDAR point cloud. Some 

features are related to point heights, echo numbers, and local geometric characteristics 

under spatial considerations. The others are driven based on waveform considerations. 

The traditional multiple-pulse LiDAR data are tested in this study. Therefore, the 

spatial features, including height-based, echo-based, and eigen-based features, are 

used in the experiments. 

2.2 Geometric eigen-features 

The PCA is an orthogonal transformation technique used to convert a set of 

points with possibly correlated variables to another set of points with linearly 

uncorrelated variables called principal components in which the first principal 

component has the largest variance and each successive component is orthogonal to 

the preceding components (Jolliffe, 1986). Given a 3D point set   n

iiii zyx 1,, P

within a neighborhood ball of diameter r, an efficient method to compute the principal 

components of the point set P is to diagonalize the covariance matrix of P. In matrix 

form, the covariance matrix of P is written as 
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where ̅݌  represents the mean of the points, that is, npp
n

i i 


1
, where n 

represents the number of points in P. iw  is the weight of point ip , and generally, 

1iw . The eigenvectors and eigenvalues of the covariance matrix are then computed 

by using matrix diagonalization technique, that is, DCVV 1 , where D is a 

diagonal matrix containing the eigenvalues  321 ,,   of C, and V is an orthogonal 

matrix that contains the corresponding eigenvectors. The obtained eigenvalues are 



greater than or equal to zero, that is, 0321   , because the covariance matrix 

is a symmetric semi-positive definite matrix. In geometry, the eigenvalues relate with 

an ellipsoid that represents the local geometric structure of a point set (Gumhold et al., 

2001). 321 ,   represents a stick-like ellipsoid, meaning a linear structure such 

as building edges. 321    indicates a flat ellipsoid, representing a planar 

structure. 321    corresponds to a volumetric structure such as corners of 

buildings. Some combinations of these eigenvalues provide discriminating geometric 

features, especially for the point clouds in urban areas. Following the definitions in 

(Gross and Thoennessen, 2006; Demantke et al., 2011), the eigen-features of linearity 

A , planarity P , and sphericity S  are defined as   121  A , 

  132  P , and 13  S . The linearity feature can be used to detect line 

structures; the planarity feature has the ability to discriminate planar structures; and 

the sphericity feature allows the exhibition of 3D structures. 

 

Fig. 1. Results of PCA on point datasets with uniform sampling (top), incomplete 

surface sampling (middle), and different sampling densities (bottom). 

While PCA obtains mathematically optimal principal components, it should be 

noted that this method is sensitive to point distribution, especially for data with 

outliers, missing information, and different sampling densities (Stanimirova et al., 

2007; Kriegel et al., 2008). Outliers are points that exhibit far different positions 

compared with the majority of the dataset. Therefore, the obtained principal 

components are unable to describe properly the majority of the data. Similarly, 

missing information and different sampling densities make PCA difficult to accurately 

describe the geometric shape of data. As shown in Fig. 1, the PCA on point sets with 



missing information and different point densities generate inaccurate eigenvalues and 

eigen-features. A possible solution to this problem is to use the center of a 

neighborhood ball as the mean in PCA calculation. This approach is efficient and 

insensitive to point density. However, the smallest eigenvalue is generally larger than 

that of PCA using sample mean for non-planar data sets (Fig. 2). In addition, the 

smallest eigenvalue may be inaccurate near object edges because of missing 

information. Another solution is using ellipsoid fitting instead of PCA. This approach 

can solve the problem of missing information for point sets with ellipsoidal shapes; 

however, the approach suffers from difficulties caused by point distribution as shown 

in Fig. 2.  

 

Fig. 2. Fitting results on point datasets with uniform sampling (left), incomplete 

surface sampling (middle), and different sampling densities (right). Top: PCA (using 

the center of a neighborhood ball as the mean); bottom: ellipsoid fitting.  

 

Fig. 3. Examples of airborne LiDAR point clouds with multiple-strip scanning (left) 

and incomplete surface sampling (right). 



The recently proposed generalization of PCA, called weighted PCA, deals with 

outliers by assigning weights to the points (Kriegel et al., 2008). A distance-based 

weighting function is generally used in the weighted PCA to decrease the influence of 

outliers. The problem of data with missing information is solved by reconstructing the 

missing parts by utilizing an iterative data filling procedure with the aid of the 

existing parts (Stanimirova et al., 2007). However, these two approaches and 

strategies for missing information and outliers cannot be successfully applied to 

LiDAR point clouds. The distance-based weighting in weighted PCA can cope with 

outliers and noise. However, this weighting strategy cannot handle point clouds with 

incomplete surfaces well. In addition, this strategy also suffers difficulties coming 

from different point densities of point clouds caused by multiple-strip LiDAR 

scanning. As for the strategy of information reconstruction, it is difficult and 

unsuitable for LiDAR point clouds. The existing point cloud reconstruction methods 

(Kazhdan et al., 2006; Yeh et al., 2011) rely on accurate point normal for surface 

interpolation and are only suitable for dense and noiseless point clouds. The missing 

information is generally present in the airborne LiDAR data because of the 

self-occlusions of the terrain relief and ground objects, such as trees and buildings, 

and multiple-strip scanning is common in large-area LiDAR data acquisition (see Fig. 

3). Therefore, a novel weighting function with geometric median is proposed to 

alleviate these problems in the eigen-feature analysis as described in Section 2.3. 

2.3 Eigen-feature analysis of weighted covariance matrices 

To reduce the surface sampling problems of LiDAR data in eigen-feature 

analysis, each point in a local point set, i.e., a point set in a neighborhood ball, is 

assigned a weight to represent its spatial contribution in weighted PCA, which is 

similar to the weighting strategy in computing the discrete surface gradient and 



curvature (Luo et al., 2009; Merigot et al., 2011). We also use the geometric median, 

which represents the localized center of a point set, to calculate the covariance matrix 

instead of the sample mean which is sensitive to surface sampling. With the proposed 

weighting scheme and geometric median, the covariance matrix in (4) is reformulated 

as 
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where )( ip pw
gm

 is the weight of point ip   with respect to the geometric median 

gmp . The geometric median determination will be described at the end of this section. 

 

Fig. 4. Illustration of the relation between the areas of Voronoi cells and the point 

densities. 

A possible solution in measuring the spatial contributions of the points is to 

compute the areas of surfaces occupied by the points with the aid of Voronoi diagram. 

The point occupied space can be defined as the Voronoi cell of that point. However, 

the construction of the Voronoi diagram for each point in a point cloud involves 

finding the best-fitting plane, projecting the points to that plane, and constructing a 

Voronoi diagram on that plane. These processes are computationally intensive 

because of the repetitive processes in a large amount of points. In addition, these 

processes may be non-robust for points in high-curvature regions because the 



calculation of Voronoi cells depends on the approximation of point surface, i.e., the 

best-fitting plane. The Voronoi diagram can be robustly determined for polygonal 

models or dense and uniformly sampled point clouds, such as the data tested in (Luo 

et al., 2009; Merigot et al., 2011); however, it is difficult for LiDAR point clouds with 

inherent noise and incomplete shapes, i.e., missing information. In this paper, a simple 

and efficient approach is proposed to approximate the areas of Voronoi cells. Fig. 4 

shows that the areas of Voronoi cells have a direct link to the point densities. A larger 

Voronoi cell area leads to a smaller point density. Therefore, the point density is 

inversely proportional to the area of the point occupied surface, and it is an efficient 

approach to measure the spatial contributions of points. In addition, the point distance, 

which is a commonly used weighting in tensor voting and PCA (You and Lin, 2011; 

Kriegel et al., 2008), is introduced in our weighting scheme. A point close to the 

geometric median is assigned a large weight and vice versa. The weighting function is 

defined by combining the factors of surface area and distance as 

  )()()( iipip ppGpw
gmgm

 ,                               (6) 

where )( ip   represents the point density of point  ip , which is defined as the 

normalized number of points within a neighborhood ball centered at point . The 

number of points is normalized by n, that is, the number of points in the given local 

point set.    is an unknown real number used to well fit the point densities to areas 

of occupied surfaces and to search for the optimal geometric median. )( ip pG
gm

  is the 

Gaussian distance between point   and geometric median gmp , which is defined as 
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where   is the standard deviation of the Gaussian function. In the experiment, 2  

is set to 0.5 based on our empirical observation. Note that compared with Euclidean 

and Hausdorff distances, the use of Gaussian distance can better resist outliers 

ip

ip



because the points far from the geometric median are assigned smaller weights. 

 

Fig. 5. Illustration of the difference between the mean (blue point) and the geometric 

median (red point) of a point set. 

The geometric median is a center estimator of an arbitrary point set that 

minimizes the weighted sum of the Euclidean distances between the geometric 

median and all of the data points. Given that the outliers are removed, the geometric 

median has the property of sampling insensitivity compared with the sample mean 

used in (4), as exemplified in Fig. 5. The sample mean (blue point) is the arithmetic 

average of a set of values; thus, the sample mean is sensitive to LiDAR surface 

sampling. By contrast, the geometric median (red point) is the center of a local shape, 

which is potentially sampling insensitive. Therefore, the geometric median can aid in 

the description of the majority of a surface data. Formally, the geometric median is 

defined as  
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Calculating the geometric median depends on the point weights, which is 

measured based on the obtained geometric median and the constant   in the 

weighting function. Therefore, an iterative process is adopted to obtain the geometric 

median, the point weights, and the constant  . This process is described in the 

pseudo-code. Initially,    is set to 1, and the geometric median gmp
 
is set to the 

mean of the input points, i.e., npp
n

i i
c
gm 


1
. The point weights are then iteratively 



computed with the current geometric median, and the geometric median is 

recalculated with the obtained point weights. In each iteration, the function 

MovingDirection() is performed to probe for the optimal  . This process is achieved 

by checking whether the increase and decrease of   can better fit the optimization 

function in (8). The offset d of   is returned from this function. The iteration is 

terminated if the difference between the current geometric median c
pgp  and the 

previous geometric median o
pgp  is less than a user-defined threshold  . The 

obtained point weights and geometric median are used in calculating the covariance 

matrix of P, and the eigen-features are then obtained from the eigenvalues of the 

covariance matrix. Note that in the case of uniformly sampled point sets, the weights 

of points are the same because of the same point density. In this case, Eq (8) is 

simplified to 
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where k represents the point density. The minimization of (9) occurs when the 

geometric median is equal to the data mean, meaning that the proposed method is 

simplified to the standard PCA. 

 

Input: P: input point set  npp ,,1  . 

Output: gmp : geometric median; 
gmpw : point weights. 

Procedure Weighting () { 

    1 ; npp
n

i i
c
gm 


1
;  

    Compute the point weights by using the initial geometric median c
gmp ; 

 repeat 
c
gm

o
gm pp  ; 

d=MovingDirection(
c
gmp );  

//probe for the optimal   and return the offset of  , denoted by d. 

d  ; 

Re-compute the point weights 
gmpw  using (6) with the new  ; 



npwp
n

i ip
c
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

1
; 

    until 
2c

pg
o
gm pp ; // is a user-defined threshold. 

Output c
gmp  and 

gmpw ; 

} 

3. Experimental Results 

3.1 Evaluation of proposed weighting scheme 

Several simulated LiDAR data were generated and tested to evaluate the 

proposed method. The simulated data are generated by an airborne LiDAR simulator, 

which has two components: sensor and platform (Chen et al., 2014). The parameters 

for the sensor include the scanning field of view (FOV) and the laser pulse rate, i.e., 

scanning frequency. The platform component is used to simulate the aircraft condition, 

which includes the following parameters: trajectory, height, and velocity. In the 

experiments, the laser pulse rate was set to 80 kHz (laser pulse rate generally ranges 

from 25 kHz to 100 kHz); the FOV was set to 40 degrees; the flying height was set to 

1000 m (flying height generally ranges from 500 m to 2000 m); and the flying speed 

was set to 450 km/hr.  

 

Fig. 6. Illustration of the relation between areas of Voronoi cells and point densities. 

The tested simulated data is shown in the left. The unit of point density is number of 

points per square meter, that is, pts/m2. 



Simulated data acquired from a surface were tested to check the relation between 

the areas of Voronoi cells, i.e., the areas of point occupied surfaces, and the point 

densities. A Voronoi diagram was generated for this simulated point set, and radius of 

neighborhood ball was set to 10 m. The areas of Voronoi cells and the point densities 

are calculated and plotted in Fig. 6. The experiment shows that the areas of Voronoi 

cells are nearly inversely proportional to the point densities and indicate that the areas 

of point occupied spaces can be approximated by point densities. Note that the areas 

of Voronoi cells are theoretically inversely proportional to the point density. However, 

the point density is defined as the number of points within a neighborhood ball, 

meaning that it is calculated in a discrete space. The approximated point density is the 

reason why the fitting line in Fig. 6 is slightly curved. 

3.2 Analysis of proposed eigen-features  

A LiDAR point cloud from overlapping strips was tested to evaluate the linearity 

and sphericity eigen-features generated by our method and PCA. The linearity feature 

can be used to detect line structures, whereas the sphericity feature allows for the 

exhibition of high-curvature points. These two features are useful geometric 

descriptors for point cloud classification, partition, and feature extraction. The 

comparisons of these two eigen-features generated by our method and PCA are shown 

in Figs. 7 and 8. The eigen-features are visualized by colors ranging from blue (the 

lowest value) to red (the highest value). Note that the color brightness in the 

overlapping and un-overlapping regions is different because of the different point 

densities. Fig. 7 reveals from the visualization of linearity features that the points 

lying around the boundaries of overlapping strips (see Area A) have larger errors 

compared with those in the un-overlapping regions. This difference in errors is caused 

by the eigen-feature analysis being sensitive to the sampling density. Therefore, 



generating reliable eigenvalues and eigen-features through the PCA is difficult when 

the variation of sampling densities in the overlapping and un-overlapping regions is 

large. The linearity features of the points lying near the boundaries of building walls 

also exhibit large errors, as shown in the close-up views of Area B, because the 

eigen-feature analysis suffers from the missing information caused by the 

self-occlusions of buildings. These problems coming from the surface sampling of 

LiDAR can be alleviated through the weighted PCA with the proposed geometric 

median and weighting strategy, and thus, the classification accuracy can be improved 

by using the generated eigen-features. 

 

Fig. 7. Comparison of linearity feature. First row: orthoimage of the test data. Second 

row: linearity features of points visualized by colors ranging from blue (the lowest 



value) to red (the highest value). Third and fourth rows: close-up views of Areas A 

and B. The linearity features generated by PCA and our method are shown in the left 

and right, respectively. 

Similarly, in Fig. 8, the ridges of building roofs are not clear in the visualization 

of the sphericity features generated by the standard eigen-feature analysis because the 

PCA is sensitive to point distribution. By contrast, the roof ridges are clearly 

presented in the visualization of our sphericity features, meaning that better sphericity 

features are obtained. From the experiments shown in Figs. 7 and 8, we conclude that 

the surface sampling problems of LiDAR can be alleviated in the eigen-feature 

analysis by using the proposed weighting strategy and geometric median. 

Fig. 8. Comparison of sphericity features. Left: orthoimage of the test data and the 

sphericity feature generated by PCA (middle) and our method (bottom). Middle: 

close-up views of the sphericity features generated by PCA. Right: our sphericity 

features. The point sphericity is visualized by colors. 



 

Fig. 9. Qualitative analysis of eigen-features. Left: uniformly sampled point cloud 

(top) and simulated data generated by the LiDAR simulator (bottom). The point 

heights are visualized by colors. Bottom: comparisons of the eigenvalues ( 1 , 2 , 3 ) 

generated by using different weighting strategies, including average weighting, 

denoted by “Avg”, inverse distance weighting, denoted by “InvDist”, and the 

proposed weighting. The x-axis is the diameter of the neighborhood ball used in the 

covariance matrix computation. The y-axis is the RMSE of the eigenvalues calculated 

from the uniformly sampled and simulated point clouds. 

A quantitative analysis of the computed eigen-features was also conducted by 

using different weighting strategies on a simulated LiDAR data. The experimental 



procedure is as follows. A polygonal building model is selected, and a uniformly 

sampled point cloud and a simulated LiDAR point cloud of this model are generated. 

The eigenvalues of the standard covariance matrix of the uniformly sampled point 

cloud and the simulated point cloud are computed using different weighting strategies, 

including average weighting, inverse distance weighting, and the proposed weighting. 

The eigenvalues calculated from the uniformly and regularly sampled point cloud are 

regarded as the ground truth in the comparison. The eigenvalues computed from the 

simulated point cloud are evaluated and compared with the ground truths by using 

root-mean-square error (RMSE). The comparison is shown in Fig. 9. Compare our 

weighting function with the average and inverse distance weights, on average, the 

accuracy of 1  is improved by 18.5% and 11.8%, respectively; that of 2  is 

improved by 0.7% and 4.1%; and that of 3  is improved by 3.7% and 3.5%. The 

improvement of 1 , i.e., the eigenvalue of the first principal component, is greater 

than those of 2  and 3 . This experiment indicates that the proposed weighting 

function that considers the point distribution in the point weighting is better than the 

average and inverse distance weighting functions which suffer difficulties coming 

from incomplete surface sampling and different point densities of LiDAR point 

clouds. In addition, this result meets the visual comparisons shown in Figs. 7 and 8, 

where the improvement of the linearity eigen-feature (mainly dependent on 1 ) is 

larger than that of the sphericity eigen-feature (mainly dependent on 3 ). We 

conclude from the qualitative and quantitative analyses that the eigenvalues and 

eigen-features from the proposed weighted covariance matrix can better describe the 

geometric characteristics of LiDAR point clouds, compared with those from the 

standard covariance matrix. 



 

Fig. 10. Test dataset #1. Left: orthoimage. Middle: corresponding LiDAR data 

visualized by colors on the basis of point heights. Right: ground truth data. The 

ground and water points are visualized by dark brown and blue. The building and 

non-building points are displayed by light brown and gray.  

 

Fig. 11. Test dataset #2. Left: orthoimage. Middle: corresponding LiDAR data 

visualized by colors. Right: ground truth data. 

 3.3 Analysis of point cloud classification 

The point cloud classification was evaluated on two airborne LiDAR datasets, 



which were acquired by Optech ALTM 30/70 at Tainan, Taiwan in 2011. The first 

dataset shown in Fig. 10 has 2.1 million points with an average point density of 

3.5 points/m2. The second dataset shown in Fig. 11 has 3.3 million points with an 

average point density of 3.1 points/m2. The outliers are removed manually, and the 

ground truths used in evaluating classification accuracy are semi-automatically 

generated by using the software TerraScan with the aid of orthoimages. The 

orthoimages are used only in generating ground truths and not in the classification. In 

the ground truths, point clouds are classified to four classes: ground, water, building, 

and non-building. The SVM classifier is used to evaluate the generated eigen-features. 

Only the points belonging to the building and non-building classes are tested. In the 

experiment, various point cloud features are used, including the eigen-based 

geometric features (containing linearity, planarity, and sphericity), the height-based 

features (including height difference, i.e., the height difference between the LiDAR 

point and the lowest point in the neighborhood cylindrical volume, and the height 

variance, which is formulated as the height variance of the points in the neighborhood 

cylindrical volume), and the echo feature, which is defined as the number of returns. 

For more details of the height-based and echo-based features, please refer to (Mallet 

et al., 2011). Note that the process of feature selection is not performed in 

classification; thus, the selected features have the same influence on the classification 

results. 

The classification accuracy is computed based on the ground truths, and the 

results are shown in Table 1. The accuracy of our classification improves on average 

by 2.71% and 1.60% in the training and testing steps, respectively, compared with the 

classification using standard eigen-features. The confusion matrix of our classification 

shown in Table 2 indicates that the classification accuracy of non-buildings is better 



than that of buildings. Note that our classifications have accuracies between 90% and 

95%, which is slightly lower than those from the previous studies (Antonarakis et al., 

2008; Brodu and Lague, 2012) with accuracies above 95%. This result is caused by 

the random selection of our training set and the skipping of the feature selection 

process. However, this study addresses on the geometric eigen-features, and the main 

purpose of these experiments is to prove that the classification accuracy can be 

improved using the generated eigen-features. To further check the improvement of the 

generated features, only the eigen-based features are used in the classification. The 

classification result shown in Table 2 indicates that the classification accuracies are 

improved by 4.05% and 2.21% in Datasets 1 and 2, respectively. In addition, the 

visual comparison in Fig. 12 shows that some incorrect classifications near the 

building boundaries are improved by using the generated eigen-features.  

 
Fig. 12. Visual comparison of point cloud classifications using the standard 

eige-features (left) and the generated eigh-features (right). Top: orthoimage and 

cooresponding LiDAR data (from dataset #2); bottom: classification results. The 



correct and incorrect classified points are displayed by gray and red, respectively. 

Table 1. Comparison of classification accuracy. Eigen-based, height-based, and 

echo-based features are used in this experiment.  

 
PCA Our approach 

Dataset #1 Dataset #2 Dataset #1 Dataset #2 

Training 91.3% 92.6% 93.5% 95.8% 

Testing 90.8 % 88.2% 92.0% 90.2% 

 

Table 2. Confusion matrix of the classification using the proposed method. 

 Class Building Non-building 

Dataset #1 
Building 88.7%  11.3% 

Non-building 7.7% 92.3% 

Dataset #2 
Building 86.2%  13.8% 

Non-building 6.6% 93.4% 

Table 3. Comparison of classification accuracy. Only the eigen-based features are 

used in this experiment. 

 PCA Our approach 

Dataset #1 69.5% 73.6% 

Dataset #2 68.1% 70.3% 

4. Conclusions and Future Work 

This paper addresses the issue of airborne LiDAR point cloud classification in 

urban areas. The main goal is to generate reliable eigen-features from a point cloud to 

improve classification accuracy. Our method is based on the weighted covariance 

matrix with the geometric median, which is insensitive to the non-uniform and 

incomplete sampling natures of airborne LiDAR scanning. In the eigen-feature 

analysis, each point in a local point set is assigned a weight to represent the spatial 

contribution of the point. Point density, which has the property of computational 

efficiency, is introduced in the weighting function to approximate the area of surface 



occupied by a point. In addition, the geometric median, which is the geometric center 

of a point set, is used instead of the sample mean in calculating the covariance matrix. 

An iterative solver is proposed to obtain the geometric median and point weights. The 

experiment results on the simulated point cloud shows that the accuracy of the 

eigenvalues calculated from the proposed weighted covariance matrix improves by 

0.7% to 18.5%, compared with that of the eigenvalues calculated from the standard 

covariance matrix. Besides, in the visual comparisons of the linearity and sphericity 

features, the generated eigen-features provided a better description of the geometric 

characteristics of the line structures and high-curvature regions of point clouds. The 

accuracy of the point cloud classifications using our eigen-features improves by 1.6% 

to 4.5%. Given the qualitative and quantitative analyses on airborne LiDAR point 

cloud and simulated data, we conclude that the eigen-features calculated from the 

proposed covariance matrix can improve classification accuracy compared with that 

calculated from the standard covariance matrix. In the near future, we aim to apply 

our method to point cloud registration and segmentation, which are also important 

topics in point cloud processing. We also plan to investigate the application of our 

method on the point clouds captured from laser terrestrial mobile mapping systems, 

discuss the effects of outliers in eigen-feature calculation, and determine the value of 

parameter   in the weighting scheme according to the point neighborhood 

distribution.  
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