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An easy-to-use mesh pose-editing system is presented. We take advantage of both

skeleton-based and example-based approaches in order to provide an intuitive way for

artists to edit mesh poses. Our system automatically extracts the skeletons of the remaining

examplemodels once the skeleton of a reference mesh is constructed. In our editing system the

desired skeleton can be easily and naturally posed using an inverse kinematics (IK) algorithm

incorporated with searching the optimal weights in the defined skeleton space of examples

meshes. Eventually, the desired shape with detailed deformation can be constructed by

blending the example meshes. Experimental results show that the proposed system provides

an easy and intuitive control on mesh pose-editing. Copyright # 2007 John Wiley &

Sons, Ltd.

Received: 14 May 2007; Accepted: 14 May 2007

KEY WORDS: pose-editing; example mesh; animation; deformation; skeleton

Introduction

Editing fascinating 3Dmodels quickly and conveniently

has been a very important research topic in computer

animation. Editing a model might be very tedious work.

In theworst-case scenario, artists must be forced to edit a

model vertex by vertex, if a natural configuration and

detailed deformation are required. Inverse kinematics

(IK)1–4 is the most common approach to pose an

articulated object by determining joint configurations.

However, to accurately edit a natural pose an IK system

mustworkwith some kinematic constraints. It is also not

easy to set correct constraints for expressing a desired

figure. An efficient solution to realistic skeleton poses

creation is presented in References.5,6 Their generated

poses are derived from existing natural poses. However,

if the detailed and lifelike skin of a model is demanded,

an additional skinning approach7,8 must be applied here

to produce a natural skin.

Another solution is to directly pose a mesh (i.e.,

skeleton-free editing) by a few selected anchors.9–13 The

user moves these anchors through an intuitive interface

and then computes new positions for the remaining

non-anchor vertices based on their geometric features. In

addition, some researches have been concentrated on

preserving the original geometric characteristics such as

area14 and object volume.15,16 Later, example-based

mesh editing approaches are presented.17,18 From input

examples, they present a novel mesh-based IK approach

to find meaningful mesh deformations that meet the

specified vertex constraints. Each example mesh is

represented as a feature vector formed by deformation

gradients of faces.

In this paper, we develop a new and intuitive way for

editing a mesh based on the existing example models. In

the proposed approach, the skeletons of example

meshes are automatically computed. First, based on a

cyclic-coordinate descent (CCD) algorithm,4 the users

can intuitively specify their desired shape (skeleton) by

simply controlling the end-effectors. Then, we take the

edited/desired skeleton as a constraint to find the

optimal weights in the example skeleton space. Finally,

the existing example meshes are blended with the

obtained weights to synthesize a mesh with a mean-

ingful skin deformation inferred from example meshes.

The remaining of this paper is organized as follows.

Next section overviews our editing system. The detailed

methods in this system are introduced in Section
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Methodology. Section Results and Discussions shows the

results created by our system with discussions. Finally,

conclusions are described in Section Conclusion.

SystemOverview

We schematically illustrate the proposed mesh pose-

editing system in Figure 1. This system consists of two

main procedures: initialization and editing. We briefly

describe these two procedures below:

� Initialization: First, one of the example models is

selected as the reference model. This reference model

is decomposed into several connected near-rigid com-

ponents (as shown in Figure 1(b)). Second, the

skeleton of a reference model is constructed according

to the partitioned result. Finally, those skeletons of the

remaining examples are automatically computed (as

shown in Figure 1(c)).

� Editing and Animation: To provide an easy and intui-

tive control over pose editing for artists, the CCD

algorithm is applied. The artists interactively select

an active kinematic chain of joints and then simply

specify the position of an end-effector for posing their

desired skeleton. Our algorithm then takes this edit-

ed/desired skeleton as a constraint to search the

optimal weights in the skeleton space spanned by

example skeletons. The obtained weights are next

applied to blend the example meshes to generate a

desired mesh. The artists can continue editing the

mesh to create another key-pose. Animation can be

achieved by linearly interpolating these weights

between two key-poses.

Methodology

Skeleton Construction of Example
Meshes

We need to build a skeleton for each example mesh.

First, given the input examples, we use19,20 to partition

the reference model into several near-rigid components

according to the deformation gradients21 computed

from these input models. A skeleton can be built by a

collection of these near-rigid components connected by

joints. In this simple manner, the connected skeleton of a

reference model is constructed according to partitioned

results. To automatically obtain a desired and good

skeleton is not an easy task. Our system also allows users

to manually edit the connected skeleton if necessary.

Second, once the skeleton of a reference model is

generated, we automatically compute the skeletons

of the remaining examples as follows. We adopt the

concept of the mean value coordinate (MVC)22 to find

Figure 1. System overview.
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the positions of corresponding joints in the example

models. The basic idea of MVC is to present the

coordinate of an interior in a closed mesh as a weighted

linear combination of the mesh vertices. We compute

MVCs of all joints in the reference skeleton, that is, the

weights of vertices, using equation (1). Then, using

equation (1) again, the position pjoint of each joint in an

example skeleton is calculated from the obtained

weights from the reference skeleton joints and vertex

coordinates from this example model.

pjoint ¼
P

i

P3
k¼1 wfiðkÞvfiðkÞP

i

P3
k¼1 wfiðkÞ

(1)

In the above equation, vfiðkÞ is the vertex vk on face fi,

and wfiðkÞ is its corresponding weight for linear

interpolation. Figure 2 shows an example of the skeleton

construction for example meshes.

Example-based Inverse Kinematics
Using Skeletons

The proposed systemprovides artists an intuitiveway to

edit the skeleton for their desired shapes. Our algorithm

searches the optimal skeleton configuration (i.e., a set of

weights) among the skeleton space spanned by the

skeletons of example models. In this way, we can ensure

that the generated skeletons are natural looking/mean-

ingful due to reproduction/blending from the example

skeletons, while meeting the artists’ constraints. Finally,

the obtained weights are applied to blend the example

meshes for the desired shape.

Example Skeleton Space

Given a bone bs in the reference skeleton and its

corresponding bone bd in the other example skeleton

(i.e., with different posture), we would like to compute

the bone deformation gradient, defined by the Jacobian

matrix of affine transformation, from the local frame,

defined by a reference bone bs, to the local frame, defined

by an example bone bd. A bone local frame can be easily

defined by bone itself and two additional basic vectors

ðbs � bdÞ and ðbs � bdÞ � bs ðorðbs � bdÞ � bdÞ. Next,

normalize them to become three orthonormal axes.

Then, a pure rotation between bones bs and bd can be

easily computed. Let Bi,j be the bone deformation

gradient of a bone j between a reference skeleton S

and an example skeleton Si. A newdeformation gradient

Btarget,j for a target/edited skeleton Starget in the example

skeleton space can be defined as a weighted linear

combination of all bone deformation gradients Bi,j from

the nmodel input examples (as shown in Figure 3). That is:

Xnmodel

i¼1

wiBi;j ¼ Btarget;j ; for j ¼ 1 . . . nbone (2)

where wi is the weight of Bi for representing the new

deformation gradient Btarget, and nbone represents the

number of bones. In this equation, we represent a target

skeleton pose by a linear combination of example

skeletons.

It is well known that the linear blending of rotation

matrices will result in unnatural effects. We adopt

exponential mapping18,23,24 to solve this problem. First,

wemap the rotation matrix from SO(3) to the Lie algebra

so(3) using the logarithm function. Next, we linearly

interpolate the rotation matrix in so(3) and then map

back to SO(3) using the exponential function. Therefore,

equation (2) is rewritten as:

exp
Xnmodel

i¼1

wi logBi;j

 !
¼ Btarget;j ; for j ¼ 1 . . . nbone (3)

To obtain the blending weights wi while meeting the

artists’ specified constraints, that is, the new edited

Figure 2. Skeleton construction. (a) A selected reference model, (b) The partitioned result of (a), (c) The constructed reference

skeleton, (d) The corresponding skeletons for the remaining examples.
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skeleton, we minimize the following equation:

argmin
wi

exp
Xnmodel

i¼1

wi logBi;j

 !
� Btarget;j

�����
�����; for

j ¼ 1 . . . nbone

(4)

Equation (4) can be treated as a linear system form

Ax¼ b:

logBi;j

� �
wi½ � ¼ logBtarget;j

� �
(5)

We solve this linear system in the least square sense

using the general approach x ¼ ðAtAÞ�1Atb. Since this

matrix size is not very large, it can be solved with very

low cost. Therefore, our algorithm can compute the

desired skeleton/weights very fast.

Mesh ReconstructionUsing
Deformation Gradients

Once the weights are obtained in Section Example

Skeleton Space, the example meshes are directly blended

with these weights to generate the desired mesh. First,

we calculate the triangle deformation gradient Ti,j

between the triangle j in the example mesh i and its

corresponding triangle in the reference mesh. To avoid

creating unnatural effects, polar decomposition25 is

adopted to decompose the deformation gradient Ti,j into

rotation and scale/shear components:

Ti;j ¼ Ri;jSi;j (6)

Again, we use exponential mapping to individually

blend the rotation components in so(3) with the obtained

weights from equation (5):

TjðwÞ ¼ exp
Xnmodel

i¼1

wi logRi;j

 ! Xnmodel

i¼1

wiSi;j ; for

j ¼ 1 . . . nbone

(7)

Second, the feature vector ftarget of the desired mesh

can be formed by collecting the blended deformation

gradients TjðwÞ
� �m

j¼1
calculated using equation (7),18

where m represents the number of triangles on a mesh

model. The feature vector can be rewritten as the

following equation:

ftarget ¼ Gx (8)

where vector x ¼ ðx1; � � � ; xn; y1; � � � ; yn; z1; � � � ; znÞ 2 <3n

is the collection of desired mesh vertex coordinates and n

represents the number of vertices. G is a sparse matrix in

which the coefficients are only related to the reference

mesh vertices.We can recover the Cartesian coordinates of

the desired mesh vertices x by solving the equation:

x ¼ argmin
x

jjGx� ðftarget þ cÞjj (9)

In the above equation, c is a constant vector created

from vertex constraints. Because the feature vector is

invariant to mesh translation, we need to specify the

Cartesian coordinate of one vertex to resolve the trans-

lational degree of freedom. Then, this linear system

becomes full-ranked and thus has a unique solution in the

least-squares sense. The analytical least-square solution is

expressed in the form: x ¼ GT G
� ��1

Gftarget. Eventually,

the desired shape with detailed deformation is obtained.

Mesh ConstructionWithMulti-Weights

In the previous subsections, we blend the example

meshes with a set of weights to generate the required

Figure 3. An illustration of the skeleton space spanned by the example skeletons.
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shape. Given a target skeleton, our method determines

an optimal weight for each example skeleton. Similarly,

in18 they compute an optimal weight for each example

mesh based on deformation gradients. For both

methods, the generated shape might potentially not

meet the artist’s constraints well when the example

shapes or skeletons and target shape or skeleton are very

distinct. Figure 4, for example, shows a target skeleton

(see (c)), that is, the skeleton constraints specified by

artists. However, the resulted shape (see (e)) by the

proposed method, as shown in Figure 4(e), is different

from the user’s desired shape (see (d)).

A straightforward solution is to increase the number

of example meshes. However, it requires extra cost or

effort to create more examples. To solve this problem,

like,18 more constraints are needed to fix some local

regions and then perform local mesh editing. However,

this approach may require many manual efforts, that is,

manually select the fixed regions, to accurately set

several constraints. In this paper, we extend the basic

idea in Section Example Skeleton Space and redefine the

example skeleton space as a set of subspaces. Each

subspace is spanned by an individual bone in the

example models. It means that each bone will generate a

set of weights for its target bone. In this manner

the skeleton space is extended and more meaningful

shapes are available for editing. The linear system for

calculating weights for a bone k is expressed as below:

logT1;k logT2;k ::: logTnmodel;k

logT1;1 logT2;1 ::: logTnmodel;1

logT1;2 logT2;2 ::: logTnmodel;2

::: ::: ::: :::
logT1;P logT2;P ::: logTnmodel;P

2
66664

3
77775

w1

w2

w3

:::
wnmodel

2
66664

3
77775

¼

logTtarget;k

logTtarget;1

logTtarget;2

:::
logTtarget;P

2
66664

3
77775 (10)

where wi represents the weight of a corresponding bone

k from each example, P represents the number of

immediately adjacent bones to this bone K.

Ti;j; 1 � i � nmodel; 1 � j � P represents an affine trans-

formation from its jth neighboring bone between the

examplemodel i and a referencemodel. In this equation,

the position of bone is related to its neighboring bones.

Generally, the number P of immediately adjacent bones

is usually 2 or 3. Therefore, it is quite fast to solve

equation (10) for each bone k. However, it might

generate an unnatural shape since the example meshes

might be blended with an extra large weight as well as it

might generate a shape with inaccurate size because the

sum of weights is not equal to 1. Therefore, we further

add two additional terms to penalize possible solutions

that are far from the example skeletons. The first term is

the weight summation. It implies that a solution close to

the mean of example models is favored to select. A

large weight will be penalized. The second term favors

that the sum of weights is equal to 1. It means that the

scale of solution must be equal to example models.

Adding these two terms, the equation is reformulated as

below:

argmin
wi

Xnmodel

i¼1

log wiTi;j

� �� log Ttarget;j

� ������
�����þ K1

Xnmodel

i¼1

wi

 

þK2

Xnmodel

i¼1

wi

 !
� 1

" #!
; for j ¼ k; 1 . . .P

(11)

where the parameters K1 and K2 are the coefficients of

the penalty terms. The parameter K1 determines the

degree of extrapolation. In Figure 5, for example, the

smaller value of K1 represents a larger degree of

extrapolation. The proper values of parameters K1 and

K2 are needed for creating a natural shape. In our

experiments, the parameter K1 is set to 1.2 and

parameter K2 is set to 2.8.

Figure 4. (a) A reference model, (b) Example models, (c) A required skeleton, (d) The required shape corresponding to (c), (e) The

result generated by the proposed approach.
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As a result, the linear system in equation (10) is

reformulated as:

logT1;k logT2;k ::: logTnmodel;k

logT1;1 logT2;1 ::: logTnmodel;1

logT1;2 logT2;2 ::: logTnmodel;2

::: ::: ::: :::
logT1;P logT2;P ::: logTnmodel;P

K1 0 ::: 0
0 K1 ::: 0
::: ::: ::: :::
0 0 ::: K1

K2 K2 ::: K2

2
666666666666664

3
777777777777775

w1

w2

w3

:::
wnmodel

2
66664

3
77775

¼

logTtarget;k

logTtarget;1

logTtarget;2

:::
logTtarget;P

0
0
:::
0
K2

2
666666666666664

3
777777777777775

(12)

Editing System

An editing system based on the CCD algorithm4 is

presented. The CCD algorithm is an iterative heuristic

search technique that attempts to minimize the position

and orientation errors by modifying one joint variable at

each step. In our system, the CCD algorithm updates an

active kinematic chain of joints rather than all of the

skeleton joints. This active chain is selected by users (the

purple line segments shown in Figure 6(b)) before the

CCD algorithm is executed. Each joint angle is modified

in order to minimize the distance between the desired

position and the end-effector (the end joint on the

selected chain is illustrated as the red point in Figure 6(b)

and (c)). The user edits bones by simply manipulating

the end-effector.

In the proposed system, artists do not need to edit all

bones. The unedited bones can be automatically inferred

from the edited bones. The system will gather infor-

mation from example skeletons to modify the unedited

bones with regard to the most possible configuration in

the skeleton space. In this manner, the artists can edit

skeletons more conveniently to obtain a natural look-

ing/meaningful target skeleton. The calculation of all

bone weights is computed in two steps. First, we

calculate theweights of the bones that are on the selected

active chain using equation (12). Second, the weights of

bones on the selected chain are considered as constraints

for finding weights of the remaining bones using

equation (12) again. At this time, some weights are

known from the first step. In other words, the positions

and weights of the unedited bones are inferred from the

bones on an active chain (Figure 7).

For this editing system, to pose a mesh, artists simply

select a chain and thenmove an end-effector of this chain

to its new position. The results can be obtained in real

Figure 5. An effect of setting the parameter K1.

Figure 6. An illustration of posing a skeleton using the CCD

algorithm. (a) The original skeleton, (b) A selected active chain

(the purple line segments), (c) Specify some fixed points (e.g.,

the green point) and freely move the end-effector (the red

point) to edit the skeleton.

Figure 7. Edited results using the proposed system.
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Figure 8. A mesh editing example. (a) Input example models, (b) The partitioned result of a reference model and its corresponding

skeleton, (c) The edited results.

Figure 9. A comparison between the IK approach using a CCD algorithm and our editing system (i.e., CCD plus examples).
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time. An active chain can include many bones (which

means a nearly-global editing) or only a few bones

(which means a local editing). Therefore, our system is

very flexible to edit poses freely for different purposes.

Results and Discussions

We use the proposed pose-editing system to quickly

create several interesting poses and animations. This

system is run on a 3GHz Pentium 4 PCwith 1G Ram and

NVIDIA GeForce 6600 display card. First, we demon-

strate an example of pose-editing in Figure 8. There are

nine example models (see (a)) used in this example. The

partitioned result of a reference model and its corre-

sponding skeleton are shown in (b). The partitioned

components are visualized in different colors. With our

system, the artist can interactively edit a character

pose by simply and intuitively moving the selected

end-effector (the red point in (c)) in real-time. The

supplementary video demonstrates an easy manipula-

tion of our pose-editing system. In addition, we can also

generate some interesting animation sequence as shown

in Figures 11 and 12. After editing several key poses

an interesting motion animation, such as walking,

slipping, and jumping, can be created by linearly

interpolating these bone weights and then reconstructed

in-between mesh.

Figure 10. A comparison between18 and our approach. The left figure is extracted from Reference.18

Figure 11. Monster slipping and walking animation. (a) The partitioned result of a reference model, (b) Input example models,

(c) The key-frames of slipping (top row) and walking (bottom row) animation.
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Compared to the traditional skeleton-based editing

approaches, that is, forward kinematics and IK, our

editing system only needs about 1�5 steps in our test

examples to specify the positions of end-effectors to

meet artists’ constraints. It also always generates natural

looking results inferred from examples. However, the

forward kinematics approach requires the artists to

accurately set the rotation at each selected joint, and the

quality of the results totally depends on artists’ skill,

effort spent, and time. A traditional IK provides more

high-level control than forward kinematics. However, it

also needs many steps to pose a desired shape. For

example, Figure 9 shows a comparison between the

proposed system and IK using a CCD algorithm. In

addition, both techniques need to carefully skin the

mesh for obtaining the desired deformation. In contrast,

our approach avoids this tedious skin task by blending

examples.

In contrast to other example-based editing appro-

aches, such as,17,18 the proposed system generally has

similar ability in terms of editing control, such as editing

the example shown in Figure 9. In terms of computing

efficiency, the proposed system is faster than18 and is

comparable to.17 In Reference,18 the approach computes

blending weights by taking deformation gradients of all

mesh triangles into account. Our approach just needs to

consider bone configurations. The number of bones is

much fewer than the number of triangles.

However, considering some editing requirements

such as the local editing, more constraints are required

for17,18 to edit new poses due to the insufficient number

of examples. For example, in Figure 10 local editing is

required in the front right leg of the Lion model; by

References 17,18 several regions are selected as fixed

regions to ensure that these regions are constrained

during local editing. Therefore, both17,18 need more

steps to carefully select these regions. Using the

proposed system, we only need two steps to achieve

similar results. At each step we only need to select an

active chain for manipulating the end-effector as shown

in Figure 10. In addition, most animators are used to

skeleton-based editing. In this sense, our system seems

more intuitive to them than References.17,18 When the

animators edit a chain of bones, they can expect their

editing results. Using References,17,18 although they are

both very good methods and allow the animators to

freely pose models by handles or constraint vertices,

from our experience the results are sometimes beyond

the imagination of the animators if they do not know

what example models are used.

Conclusion

Anovelmesh pose-editing approach is presented. In our

editing system, artists simply specify the new position of

an end-effector to fast pose their desired skeletons. Then,

we search the optimal solution in the defined skele-

ton space to compute blending weights. The detailed

deformation of the desired shape can be computed by

blending the examples meshes. We do not need to

tediously edit skin weights in contrast to traditional

skeleton-based editing systems. Experimental results

and supplementary video clips demonstrate that the

proposed system is an easy-to-use and intuitive pose-

editing system. In near future, we like to explore

possible application of our techniques to morphing

problem.26,27
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