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Consistent Volumetric Warping Using Floating
Boundaries for Stereoscopic Video Retargeting
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Abstract—The key to content-aware warping and cropping
is adapting data to fit displays with various aspect ratios
while preserving visually salient contents. Most previous studies
achieve this objective by cropping insignificant contents near
frame boundaries and consistently resizing frames through an
optimization technique with various preservation constraints and
fixed boundary conditions. These strategies significantly improve
retargeting quality. However, warping under fixed boundary
conditions may bound/limit the preservation of visually salient
contents. Moreover, dynamic frame cropping and frame align-
ment may result in unnatural object/camera motions. In this
study, a floating boundary with volumetric warping and object-
aware cropping is proposed to address these problems. In
the proposed scheme, visually salient objects in the space-time
domain are deformed as rigidly and as consistently as possible
by using information from matched objects and content-aware
boundary constraints. The content-aware boundary constraints
can retain visually salient contents in a fixed region with a
desired resolution and aspect ratio, called critical region, during
warping. Volumetric cropping with the fixed critical region is
then performed to adjust stereoscopic videos to the desired
aspect ratios. The strategies of warping and cropping using
floating boundaries and spatiotemporal constraints enable our
method to consistently preserve the temporal motions and spatial
shapes of visually salient volumetric objects in the left and
right videos as much as possible, thus leading to good content-
aware retargeting. In addition, by considering shape, motion,
and disparity preservation, the proposed scheme can be applied
to various media, including images, stereoscopic images, videos,
and stereoscopic videos. Qualitative and quantitative analyses on
stereoscopic videos with diverse camera and considerable motions
demonstrate a clear superiority of the proposed method over
related methods in terms of retargeting quality.

Index Terms—Content-aware media retargeting, mesh warp-
ing, cropping, optimization

I. INTRODUCTION

CONTENT-AWARE retargeting has drawn increasing at-
tention in the field of computer graphics during the last

decade. This technique is applied to stereoscopic images, and
recently, to stereoscopic videos because of the rapid develop-
ment of stereoscopic equipment. The studies on stereoscopic
video retargeting aims at preserving shapes and disparities of
visually salient contents, and maintaining temporal coherence.
However, these preservation objectives are difficult and some-
times impossible to achieve without generating distortions
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and artifacts [1]. When the spatial content of a left video
frame is preserved, the corresponding content in the right
video frame and in the different time frames suffer distortions
caused by inconsistent transformation. Therefore, balancing
the preservation requirements and avoiding spatial and tem-
poral artifacts are still challenging problems in stereoscopic
video retargeting.

Frame cropping and mesh warping are common techniques
of content-aware retargeting. Frame cropping removes in-
significant content near frame boundaries, and mesh warping
optimizes the deformation between a source and a target
data using various preservation constraints. Wang et al. [1]
have proven that combining these two operations can improve
retargeting quality. They warp frames through an optimization
with hard boundary constraints, and then crop the warped
frames to explicitly match the desired aspect ratio (Figure
1). In cropping, a critical region of the desired aspect ra-
tio that contains significant contents is determined for each
frame. Although significant contents can be preserved in this
manner, the critical regions of different positions in frames
may result in unnatural motions. To solve this problem, a
volumetric warping and cropping method based on the concept
of floating boundary is proposed wherein visually salient
volumetric objects in the left and right videos are deformed
as consistently and as rigidly as possible under content-aware
boundary constraints. The strategies of volumetric warping and
floating boundary can lead to consistent content preservation
and unnatural object/camera motions avoidance.

The basic idea of the proposed method is using floating
boundaries, which has not been studied before to the best of
our knowledge, and using information of matched volumetric
objects in warping and cropping. The information of matched
volumetric objects in a pair of videos enables the generation
of object significance maps and consistent preservation of
visually salient objects. The floating boundaries, that is, defor-
mation optimization using content-aware boundary constraints,
allow preservation of spatial shapes and temporal motions of
volumetric objects.

In the proposed method, the input stereoscopic video
clip is segmented into several volumetric objects, and the
corresponding objects in the left and right video clips are
assigned with the same significance value in preprocessing.
The positions of high-significance contents in each frame are
detected by using a weighted principal component analysis
and a thresholding-based filter. A soft weight is assigned to a
boundary vertex based on the distance to the detected high-
significance contents. The use of soft boundary weighting in
warping keeps visually salient objects in a fixed critical region
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Fig. 1. Retargeting using floating boundaries and a fixed cropping window. Warping and cropping by using fixed boundaries and a dynamic cropping window
may result in unnatural object/camera motions (middle). The proposed method which uses content-aware floating boundaries and a fixed cropping window
can alleviate this problem (right). The cropping windows are marked by red quadrangles.

of the desired resolution and aspect ratio, which can potentially
avoid unnatural temporal motions caused by warping and
cropping that uses different critical regions in frames [1]. For
example, in Figure 1, the temporal motion of the deformed
foreground object is oblique and exhibits shifting effects,
which is different from the original motion, when a dynamic
cropping window is used. By contrast, the motion shifting
effects are efficiently alleviated by using the proposed floating
boundary and static cropping window.

II. RELATED WORK

Numerous content-aware retargeting methods have been
proposed recently. These methods can be classified into crop-
ping, seam carving, and warping based on the characteristics
of the adaptation algorithms. In cropping, a cropping window
or critical region is determined, such that the amount of
visually salient contents within the critical region is maximized
[8] or the aesthetic value defined according to the stereoscopic
photography principles is maximized [9] while the tempo-
ral coherence is preserved [1]. The advantage of cropping
methods is the distortionless adaptation of the contents near
the data center. In seam carving [10]–[15], a one-pixel width
continuous or discontinuous seam line or surface with minimal
significance is iteratively carved or inserted to reduce or en-
large the input data to the desired aspect ratio. This technique
allows high flexibility in removing pixels, and thus, it can deal
with data that contains many homogenous regions.

Compared with the methods that discretely remove seams
or crop borders of an image/frame, warping-based methods
that deform data using various constraints are potentially

suitable for data containing dense information. Wang et al. [1]
incorporate motion-aware constraints with the mesh warping
to preserve visually salient motions in video retargeting. Con-
secutive frames are aligned by estimating inter-frame camera
motion and by constraining the relative positions of the aligned
frames to preserve temporal coherence and reduce waving
artifacts. In addition, similar to the multi-operator retargeting
technique [16], they integrate cropping and warping into the
retargeting framework wherein the cropping removes tem-
porally recurring contents and the warping utilizes available
homogenous regions to absorb deformations from warping.
In their later work [17], the scalability problem caused by
global optimization over the entire space-time volume is
solved without compromising resizing quality. Although these
warping-based methods can provide good retargeting results
for numerous cases, the recent study [18] reports that the
object occupying several quads may suffer from inconsistent
deformation. This problem may lead to apparent distortions,
particularly of structure lines. Therefore, Lin et al. [18] pro-
pose an object-preserving warping technique that uses object
motions instead of pixel motions in warping to address this
problem. Similarly, Li et al. [19] propose a spatiotemporal
grid flow that segments a video clip into spatiotemporal grids
wherein the consistency of the content associated with a
spatiotemporal grid is preserved during warping, and Yuan et
al. [20] propose a volume-based metric and solve the video
retargeting in graph representation.

Recently, the mesh warping techniques are applied to stereo-
scopic image retargeting [21]–[24]. The key to this retargeting
is to preserve pixel disparities in addition to object shapes.
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Fig. 2. Schematic workflow of the proposed approach. From left to right: original frames, significance map generation, volumetric warping, and cropping.

Based on the idea of mesh warping, the methods [21]–[24]
optimize a mesh deformation with the aid of depth layer
information, significance maps, and disparity maps. Therefore,
both the disparities and shapes of high-significance objects can
be preserved. Lang et al. [25] and Chang et al. [21] discuss
the perceptual aspects of stereo vision and their applications
in content manipulation. They provide a set of disparity map-
ping operators with a warping function to achieve desirable
disparity distributions.

In the present study, the objectives of preserving visually
salient contents, including shapes, motions, and disparities, are
the same as those in [18], [23], and the idea of integrating
warping and cropping in the retargeting scheme is the same
as that in [17]. However, the proposed method has substantial
differences from these methods. First, instead of using pixel
coherence and fixed boundaries in warping, the uses of vol-
umetric object coherence and floating boundaries allow the
determination of a fixed critical region and the preservation
of visually salient objects. Second, by using content-aware
boundary constraints, the cropping window in frames is static
rather than dynamic, which can efficiently alleviate unnatural
temporal motions caused by the different positions of critical
regions. Third, the proposed preservation constraints and sig-
nificant map of volumetric objects can provide good shape,
motion, and disparity preservation.

III. METHODOLOGY

Figure 2 shows the schematic workflow of the proposed
method which consists of three main steps, namely, signifi-
cance map generation, volumetric warping, and cropping. The
basic idea is to resize stereoscopic videos by utilizing the infor-
mation of volumetric objects. Therefore, the input stereoscopic
video clip is firstly partitioned into several volumetric objects
by using the video segmentation technique [26]. To realize
content-aware retargeting, saliency detection [2] is adopted to
evaluate pixel saliency in the left and right video clips. Signifi-
cance measurement for segmented objects is then performed to
generate significance maps. Each volumetric object is assigned
a significance value to address the problem of inconsistent
object deformation. In the next step, the proposed volumetric
warping that uses floating boundaries is performed. A grid
mesh is created to cover the left and right videos, and the
volumetric objects are forced to undergo as-rigid-as-possible
and as-consistent-as possible deformation by using various
constraints, including spatiotemporal, disparity, and content-
aware boundary constraints. During warping, the frame bound-

aries are floating (or unfixed) and high-significance objects are
potentially retained in a region with the desired aspect ratio.
Therefore, in the next step, a simple cropping is performed
to remove the contents outside the determined critical region,
meaning that the cropping window is fixed in frames. The
generation of significance maps is described in Section III-A,
and the volumetric warping and cropping which are described
in Sections III-B and III-C, respectively.

A. Significance map generation
One of the basic ideas in our method is using volumet-

ric object information in warping. This idea requires data
segmentation and object-based significance measurement pro-
cesses. In the proposed method, the frames of the left and
right video clips are interleavingly placed and combined into
a single video clip in order to segment them consistently.
Following the approach in [23], the combined video clip
is partitioned into several volumetric objects by using the
hierarchical graph-based segmentation technique [26]. In this
manner, the volumetric objects in the left and right video
clips and the correspondences between them can be obtained.
Each volumetric object is assigned with the average saliency
values of the pixels within that object. The pixel saliency is
estimated by the saliency detection approach [2]. Note that
this study does not focus on the video segmentation and
saliency detection. Any advanced method such as the recent
segmentation method [27] and saliency detection method [7]
can be adopted in the proposed scheme for better results.

With this object-based significance measurement, a high-
significance object can be deformed as rigidly as possible
during warping, and inconsistent object deformation reported
in [28] can be efficiently alleviated. To further preserve sig-
nificant contents, the saliencies of high-significance objects
are enhanced, whereas those of low-significance objects that
potentially belong to the background are suppressed. Such
process is achieved by performing saliency enhancement with
the information of object volumes as follows:

wi =

{
si−Ωmin

smax−Ωmin
, if si > Ωmin;

0.1 , otherwise,
(1)

where si is the significance value of the segmented object oi,
wi is the enhanced value of si, and wi ∈ [0.1, 1]; Ω represents
the significance value normalized by the object volume (that
is, the number of pixels within that object); and smax and
Ωmin denote the maximum of significance values and the min-
imum of normalized significance values, respectively. Figure
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Fig. 3. Significance map generation. Left: input video frame; middle:
significance map; right: enhanced significance map. Significance values are
visualized by colors ranging from blue (lowest significance) to red (highest
significance).

3 presents an example of stereoscopic video segmentation and
significance map generation. The foreground objects and the
background in the video clip are separated, and the object
significance values are evaluated and enhanced by using Eq.
(1). Compared with the unenhanced significance map, the
foreground objects with the enhanced saliency values can be
better preserved during warping.

B. Volumetric warping using floating boundaries

A uniform cubic grid mesh M = (MeshL,MeshR), which
covers the input stereoscopic video, is created to be the control
mesh in warping. This control mesh consists of two sub-
meshes Mesh{L,R} = {V{L,R},E{L,R},Q{L,R}} with vertex
positions V, edges E, and quads Q, to control warping of the
left and right video clips. In addition, a set of segmented ob-
jects O = {O1, ..., Ono} and their corresponding significance
values {w1, ..., wno

} obtained in the preprocessing are used
in warping, where no represents the number of segmented
objects. To preserve the spatial shapes, disparities, and tempo-
ral motions of the stereoscopic video clips, three constraints,
namely, volumetric object preservation, disparity preservation,
and floating boundary are defined with an optimization solver.

Volumetric object preservation constraint. The proposed
warping scheme aims to find a deformed grid mesh M̃, in
which the quads in a high-significance volumetric object are
deformed as consistently and as rigidly as possible. To achieve
this objective, two energy terms, namely, object preservation
and grid bending, are defined. Following the energy terms in
[18], the object preservation energy is defined as measuring
the rigidity of a volumetric object as follows:

ψOp(M) =
∑
Oi∈O

wi ×
∑

ej∈Oi

‖ẽj − Tij C̃i‖
2
, (2)

where wi is the enhanced significance value of object Oi;
and ẽj and C̃i represent a deformed edge and the deformed
representative edge of object Oi, respectively. The representa-
tive edge functions as a deformation pivot of the edges in an
object. The edge closest to the center of the volumetric object
is selected as the representative edge. Tij is the similarity
transformation between ej and Ci. This energy measures the
changes in geometric relations of edges within a volumetric
object. Thus, this energy can potentially avoid inconsistent
object deformations.

The grid bending term is used to prevent the occurrence of
skewed artifacts on the control mesh. Based on the measure-
ment of quad orientation distortion proposed by Wang et al.

[18], grid bending is defined as measuring the line bending of
the cubic grid mesh, that is,

ψLb(M) =
∑

{i,j}∈Ex

∥∥ṽiy − ṽjy∥∥2
+
∑

{i,j}∈Ey

‖ṽix − ṽjx‖
2

+
∑

{i,j}∈Ez

‖ṽi − ṽj‖2 ,
(3)

where Ex, Ey , and Ez are the sets of x-, y-, and z-direction
edges in the control mesh, respectively.

The total shape and motion preservation constraint is de-
fined by summing up individual energy terms with weights as
follows:

ψV P =

{
α×ψOp+(1−α)×ψLb , for internal vertices;

ψOp+kmax×ψLb , for boundary vertices,
(4)

where α is the weighting factor for internal vertices, which
controls the rigidity and consistency of object deformations. In
the implementation, α is set to 0.5. The weighting factor kmax

is assigned with a large value to force boundary edges/vertices
to be straight during warping. In the implementation, kmax

is set to 100. Note that these two terms are designed with
volumetric objects in the space-time domain, and thus, the
temporal motion preservation is considered in these terms.

Disparity preservation constraint. The disparity preservation
constraint is used to preserve pixel disparities and avoid
vertically shifting effects happened between the corresponding
pixels in the left and right frames. The previous studies [21],
[22], [24] define this constraint as the difference between the
disparity values of the corresponding pixels in the original and
deformed frames, which requires the information of disparity
maps. The study [23] further considers consistent deformation,
and disparity constraints are formulated according to the
deformation consistency of objects in left and right frames.
These constraints can efficiently preserve disparities. How-
ever, we observe that disparities can be roughly maintained
without these advanced constraints in the proposed scheme
because that a volumetric object in the left and right videos
is assigned a significance value and deformed consistently
during warping (see Eq. (2)). The volumetric and consistent
warping in the proposed method reduces the needs of emphatic
disparity constraints. Therefore, a simple constraint is adopted,
which simply measures the distance between each pair of
corresponding vertices in the left and right grid meshes as
follows:

ψDP (M) =

nv∑
i=1

∥∥ṽLi − ṽRi ∥∥2 , (5)

where ṽLi and ṽRi represent the deformed vertices in the left
and right frames, respectively.

Boundary constraint. Previous warping-based methods [1]
resize frames through an optimization with hard boundary
constraints and then crop insignificant regions near frame
boundaries. Similarly, in [17], soft boundary constraints are
used in the first step of warping to search for a suitable resizing
resolution. Hard boundary constraints are then used in the



5

second step of warping to adapt data to explicitly match the
determined aspect ratio, meaning that the frame boundaries
are fixed during warping. After warping, a critical region
of the target aspect ratio that contains significant contents
is determined for each frame. Critical regions with different
positions in frames are aligned by translating frames, and
then the outer regions are discarded in cropping. Although the
combination of warping and cropping significantly improves
retargeting quality, the use of fixed boundaries may restrict
the preservation of visually salient objects, and the frame
alignment may result in frame panning and unnatural tem-
poral motions, particularly for videos containing considerable
object/camera motions.

In this study, floating boundary and static cropping win-
dow are applied in warping and cropping to alleviate the
aforementioned problems. The basic idea is to retain high-
significance contents in a region of the target aspect ratio
by using content-aware boundary constraints during warping.
Specifically, a soft weight is assigned to a boundary vertex
based on the frame content. A boundary vertex that is close
to (or far from) high-significance contents is assigned with a
high (or low) weight. This boundary weighting scheme aims
to keep high-significance contents in the desired critical region
and push low-significance contents outside the critical region.
Assume that the source stereoscopic video clip with m× n
resolution is resized into a new clip with m′ × n′ resolution.
The boundary vertex constraints are defined as follows:

ψFB(M)=



λt,i×
∥∥ṽiy−0

∥∥2
, if vi is on the top boundary;

λb,i×
∥∥ṽiy−m′∥∥2

, if vi is on the bottom boundary;

λl,i×‖ṽix−0‖2 , if vi is on the left boundary;

λr,i×‖ṽix−n′‖
2 , if vi is on the right boundary,

(6)

where λi is the weight of boundary vertex vi.
To calculate the boundary weights, the positions of high-

significance contents in each frame are determined via
a weighted principal component analysis (wPCA) and a
threshoding-based filter. The filter is used to extract high-
significance objects and the wPCA is utilize to obtain the
overall distribution of significant contents. Each pixel in a
frame is assigned with a weight to represent its significant
contribution to wPCA and to estimate the geometric median
(or weighted mean) which is regarded as a robust center of an
arbitrary point set [29]. Given a pixel set P = {(xi, yi)}

np

i=1,
an efficient method to compute the principal components of
the point set P is to diagonalize the covariance matrix of P. In
matrix form, the covariance matrix of P is written as follows:

C(P) =

∑
pi∈P wi(pi − p̄)(pi − p̄)T∑

i wi
, (7)

where p̄ is the weighted mean that is defined as
p̄ =

∑
wipi/

∑
wi, and wi is the weight of pixel pi. The

pixel significance value described in Section III-A is set as
the pixel weight. The low-significance pixels with significant
values less than 0.2, that is, the pixels that potentially belong

(c) 

(b) 

(a) 

Fig. 4. Warping by using floating boundaries. Left: original video frames;
right: retargeting results. The foreground objects in the left (a), middle (b),
and right (c) of the video frames are tested. The ellipses represent significant
content distributions, and the regions enclosed by black curves represent high-
significance objects. The red lines represent cropping windows.

to the background, are excluded in the calculation of wPCA.
The eigenvectors and eigenvalues of the covariance matrix
are computed by using the matrix diagonalization technique,
that is, V−1CV = D, where D is the diagonal matrix with
the eigenvalues of C, and V is the orthogonal matrix with
the corresponding eigenvectors. In geometry, eigenvalues and
eigenvectors are related to an ellipse that represents the distri-
bution of high-significance contents.

In filtering, the objects with significance values greater than
a defined threshold Ts are extracted as the significant objects.
Ts is a turnable parameter and the default value is 0.5 in the
implementation. The weight of a boundary vertex is defined as
a function of the minimal distance from the boundary vertex
to the determined wPCA ellipse and the extracted significant
objects, that is,

λi=

{
(c+ 1/disti)

κ/disti , if vi lies outside the ellipse;

∞ , if vi lies inside the ellipse,
(8)
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Fig. 5. Results of the proposed approaches. From left to right: original video frames, significance maps, content detection results, warping using floating
boundaries (the critical regions are marked with red lines), and retargeting results.

where c is fixed constant and κ is a turnable parameter. In
the implementation, c = 2.7 and κ = 60 based on our empir-
ical observation. disti represents the distance from boundary
vertex vi to the ellipse and detected significant objects. If
boundary vertex vi lies within the ellipse, an extremely large
weight is assigned to this vertex to preserve the significant
contents near the boundaries.

Figure 4 shows the warping results by using floating bound-
aries. Three cases are tested, in which the significant objects
lie in the left, middle, and right of the video frames. The
results show that the distribution of significant contents and the
locations of high-significance objects are accurately detected.
Therefore, these detected contents can be preserved during
warping.

Optimization with floating boundary. By combining shape,
disparity, and boundary constraints, the optimization for the
content-aware deformation Ṽ = {ṼL

, Ṽ
R} is formulated as

follows:
arg min

Ṽ
(ψV P + ψDP + ψFB). (9)

In the implementation, we fix the boundary vertices at the
top and bottom for horizontal resizing, that is, an extremely

large weight is assigned to λt and λb. Similarly, an extremely
large weight is assigned to λl and λr for vertical resizing.
In optimization, a least-squares linear system AṼ = b with a
sparse designed matrix A is obtained from Eq. (9). This least-
squares system has the optimal solution Ṽ = (ATA)−1ATb,
and thus, the deformed vertices of quad meshes M̃

L
and

M̃
R

in the left and right video clips can be obtained. To
further consider temporal coherence, a smoothing operation
using Bzier curves is performed on the z-direction edges of the
control mesh, that is, {i, j}∈Ez , thus implying that temporal
smoothing is applied to the control cubic mesh rather than the
motion trajectories.

C. Cropping

Warping with content-aware boundary constraints maintains
high-significance contents within the critical region of the de-
sired aspect ratio. Therefore, the critical region determination
and frame panning processes are avoided. We simply remove
video clip contents outside the critical region during cropping.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We implement and evaluate our method on a PC with
3.4 GHz quad-core CPU and 4 GB RAM. A stereoscopic
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Fig. 6. Warping with different values of parameter α. From left to right: original frame; warping results with the parameter settings, α = 0.1, 0.3, 0.5, 0.7,and
0.9.
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Fig. 7. Warping by using different values of boundary weighting parameter κ. From left to right: warping using κ = 20, 40, 60, 80, and 100. The x-axis is
the distance between a boundary vertex and the detected significant objects and the y-axis is the weight calculated by Eq. (8).

video containing multiple scenes can be generally divided into
several clips. Each clip that represents a single scene is resized
individually, and thus, coherently resizing the entire video is
unnecessary. For a 640× 360 resolution stereoscopic clip with
486 frames, the average computation time for warping and
cropping is 7.2414 seconds, that is, resizing a frame takes
0.0149 seconds. To demonstrate the feasibility of the proposed
content-aware boundary constraints, a video clip containing
evident foreground objects and considerable motions is tested.
Figure 5 shows the results of all processes including video
segmentation, significance map generation, significant content
detection, warping using soft boundary constraints, and crop-
ping with a fixed critical region. The results show that the
significant contents are accurately detected, and the detected
contents are mostly kept within the desired cropping win-
dow during warping because of the proposed content-aware
boundary weighting scheme. In addition, without the frame
alignment and panning processes, the fixed critical region
and cropping window results in easy volumetric cropping and
temporal motion preservation (the regions marked with red

lines in the 3rd column of Figure 5).

Parameter setting. The parameter α in Eq. (4) and the
parameter κ in Eq. (8) are the main parameters in our method.
α is the weighting factor for internal vertices, which controls
the rigidity and consistency of object deformations. κ is the
boundary weighting parameter that controls the strength of
boundary constraints. To test the sensitiveness of the retar-
geting results to these two parameters, various settings of
parameter values are tested. The results are shown in Figures
6 and 7. The results in Figure 6 indicate that a large value
of α can force high-significance objects to be rigid and
consistent, and a small value can avoid skewed artifacts. In
the implementation, the default value of α is set to 0.5 to
consider the aforementioned factors. The results in Figure 7
show that our cropping results are slightly sensitive to the
parameter κ. A small value (κ <20) leads to under-constrained
deformation, and a large value (κ >100) results in over-
constrained warping. κ=60 is suitable for various cases based
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on our empirical observation.

Comparisons. Various stereoscopic video clips are selected to
evaluate and compare our method with related methods. Some
of the selected video clips possess multiple moving objects,
unconscious camera shaking, simultaneous camera and object
motions, or dense information. Several representative cases
are shown in Figures 4-7 and 9, and the other cases are
included as attachments in accompanying documents. All
results are automatically generated by using the following
default parameters: grid resolution is 20× 20 pixels; α and
kmax in Eq. (4) are set to 0.5 and 100, respectively; c and κ in
Eq. (8) are set to 2.7 and 60, respectively; and the threshold Ts
for significant object extraction is set to 0.5. Please refer to the
results and comparisons in the accompanying and supplemen-
tal videos, particularly for temporal and stereoscopic effects
that are difficult to visualize in still frames. The proposed
warping method that considers shape, disparity, and motion
preservation is designed for stereoscopic videos. Therefore,
comparisons in terms of spatial disparity and temporal motion
preservation are conducted. With regard to motion preserva-
tion, the proposed method is compared with recent methods
that combine warping and cropping in the retargeting scheme
[1], [17]. To ensure objectivity in comparison, the resolution
of the grid mesh in our method is set to be the same as
those in these two methods. Figure 9 shows the comparison
results. We can observe that combining warping and cropping
can preserve spatial shapes efficiently. However, shifting effect
occurs on the deformed trajectories in the results of [1], [17],
compared with the original trajectories. This effect is attributed
to the use of dynamic critical region and the frame panning
process. By contrast, the shifting effect and unnatural temporal
motions are efficiently alleviated by using the strategies of
floating boundary and fixed cropping window in warping and
cropping, respectively. The comparisons between the stereo
seam carving method [14] and our method are shown in Figure
8. The results meet the conclusions in [18] that warping-based
methods have good results for images/videos containing dense
information and seam carving methods are suitable for that
containing many homogeneous regions.

Original video frames Basha et al. (2013) Proposed method 

Fig. 8. Comparison of the stereo seam carving approach [14] and our method.
From left to right: original video frames, retargeting results of Basha et al.
[14], and our results.

In addition to qualitative analysis, we conduct a quantitative
analysis by using correlation coefficients that represent the
statistical relationship between two data sets. First, the centers

of objects in frames are selected as feature points, and the
motion trajectory of an object is composed of the feature points
in frames for temporal coherence evaluation. The number of
trajectories used in the quantitative analysis is the number
of objects in a video clip. To estimate the shifting effects
of the motion trajectories, the offsets of all feature points
X : {pki − pkmean}

k=1∼nt
i=1∼nf

and X̃ : {p̃ki − p̃kmean}
k=1∼nt
i=1∼nf

in
the original and retargeted video clips are evaluated, where
pkmean and p̃kmean represent the means of the nodes in the
motion trajectories of the original and retargeted clips, respec-
tively; and nf and nt denote the number of feature points
and the number of nodes in a trajectory, respectively. The
correlation coefficient between these two data sets are defined
as CCefT (X, X̃) = Cov(X, X̃)/σXσX̃ , where Cov(X, X̃)
represents the covariance between X and X̃ , and σX and
σX̃ denote the standard deviations of the data sets X and X̃ ,
respectively. In this experiment, the center points of the objects
are the feature points used to evaluate motion preservation.
The analysis results are shown in Table I. In the 1st, 4th,
6th and 10th cases, in which the video clips contain multiple
moving objects or considerable motions, our results (average
CCefT = 0.972) exhibit better performance compared with
those of [1] (average CCefT = 0.833) and [17] (average
CCefT = 0.858). This superior performance is caused by
the use of floating boundaries and the alleviation of shifting
trajectories. In the other cases, in which the video clips
contain a single moving object with simple motions, our results
(average CCefT = 0.988) are similar to those of [1] (average
CCefT = 0.947) and [17] (average CCefT = 0.974).

For disparity preservation, our method is compared
with recent stereoscopic image retargeting methods [21],
[23]. Similarly, the resolution of the control mesh in
our method is the same as those in these two meth-
ods, and the correlation coefficient is adopted in this
analysis. The correlation coefficient in this experiment
is defined as CCefD(X, X̃) = Cov(X, X̃)/σXσX̃ , where
X : {pLi − pRi }i=1∼nf

and X̃ : {p̃Li − p̃Ri }i=1∼nf
, and pLi and

pRi are the pixels in the left and right video frames, respec-
tively; and nf denote the number of selected feature points.
The results shown in Figure 10 indicate that our method
using floating boundaries and a fixed cropping window can
better preserve both the shapes and disparities of visually
salient objects, compared with the methods [21], [23]. The
analysis results shown in Table II also indicate that our
method exhibit better performance in maintaining disparity
preservation (average CCefD = 0.950), compared with the
methods [23] (average CCefD = 0.909) and [21] (average
CCefD = 0.887).

Besides, disparity maps of the stereoscopic retargeting re-
sults are generated using the Semi-Global Matching (SGM)
(SGM) method [30] for the purpose of visual comparisons.
The disparity maps in Figure 11 show that distortion occurs
in the retargeting results because of warping. However, the
disparity maps of our results have less distortion than that
of the related methods [21], [23] because of the floating
boundary and cropping strategies. Based on the qualitative and
quantitative analyses of the motion and disparity preservation,
we conclude that our method is superior to the related methods
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TABLE I
QUANTITATIVE ANALYSIS OF TEMPORAL MOTION PRESERVATION. THE CORRELATION COEFFICIENTS CCefT OF ALL FEATURE POINTS IN THE

ORIGINAL AND RETARGETED VIDEO CLIPS GENERATED BY WANG ET AL. [1], WANG ET AL. [17], AND THE PROPOSED METHOD ARE COMPARED AND
PRESENTED IN THIS TABLE. ”AVG.” AND ”STD.” REPRESENT THE AVERAGE AND STANDARD DEVIATION OF THE CORRELATION COEFFICIENTS.

Method Avg. Std.
Wang et al. [1] 0.847 0.847 0.977 0.822 0.963 0.839 0.994 0.984 0.922 0.826 0.902 0.069
Wang et al. [17] 0.808 0.950 0.990 0.842 0.962 0.836 0.963 0.988 0.994 0.946 0.928 0.067
Proposed method 0.981 0.973 0.986 0.967 0.994 0.956 0.996 0.989 0.993 0.987 0.982 0.012

TABLE II
QUANTITATIVE ANALYSIS OF DISPARITY PRESERVATION. THE CORRELATION COEFFICIENT CCefD IS USED TO EVALUATE THE RETARGETING RESULTS

GENERATED BY CHANG ET AL. [21], LIN ET AL. [23], AND THE PROPOSED METHOD. ”AVG.” AND ”STD.” REPRESENT THE AVERAGE AND STANDARD
DEVIATION OF THE CORRELATION COEFFICIENTS.

Method Avg. Std.
Chang et al. [21] 0.958 0.941 0.877 0.965 0.823 0.812 0.769 0.934 0.960 0.826 0.887 0.070

Lin et al. [23] 0.958 0.986 0.863 0.987 0.789 0.847 0.846 0.963 0.994 0.859 0.909 0.072
Proposed method 0.991 0.997 0.946 0.971 0.867 0.989 0.970 0.971 0.993 0.802 0.950 0.061

TABLE III
RESULT OF SURVEY A. OUR METHOD IS COMPARED WITH THE VIDEO

RETARGETING METHODS [1], [17], IN TERMS OF SHAPE AND TEMPORAL
COHERENCE PRESERVATION.

Pairwise comparison 1 Pairwise comparison 2
Wang et al. [1] 474 (37.0%) N/A

Wang et al. [17] N/A 496 (38.7%)
Proposed method 806 (63.0%) 784 (61.3%)

Total 1280 (100.0%) 1280 (100%)

in terms of content preservation, particularly for stereoscopic
videos containing considerable object/camera motions.

User study. The survey system provided by Rubinstein et al.
[31] is used in the user study. In this system, paired comparison
method is adopted, in which the participants are shown two
results side by side at a time and asked to choose the one
they liked better. The user study consists of two main parts:
1) compare our method with the related video retargeting
methods [1], [17], in terms of shape and temporal coherence
preservation (denoted by Survey A); 2) compare our results
with that of [21], [23], in terms of disparity preservation
(denoted by Survey B). The Survey A has 128 participants
with age ranging from 21 to 48 years old, and the Survey B
involves 106 participants with age ranging from 22 to 42 years
old. In the comparison, the images/videos having the attributes
that can be mapped to major retargeting objectives, namely,
shape preservation, disparity preservation, and temporal mo-
tion preservation, are utilized. The test datasets for Surveys A
and B are made up of 10 videos and images, respectively. The
survey results and the number of votes are shown in Tables III
and IV. The results indicate that more than 60% participants
refer our results to that of the related methods [1], [17], in
terms of shape and temporal motion preservation. Similarly,
there are more than 60% votes in favor of our results, which
indicate that our method has better performance than the
related methods [21], [23], in terms of disparity preservation.

Limitations. Content-aware retargeting is based on the
saliency detection and content preservation constraints. Similar
to other methods, our method may shrink or crop significant
contents when an incorrect saliency map is used. Moreover,

TABLE IV
RESULT OF SURVEY B. OUR METHOD IS COMPARED WITH THE

STEREOSCOPIC IMAGE RETARGETING METHODS [21], [23], IN TERMS OF
DISPARITY PRESERVATION.

Pairwise comparison 1 Pairwise comparison 2
Chang et al. [21] 385 (36.3%) N/A

Lin et al. [23] N/A 401 (37.8%)
Proposed method 675 (63.7%) 659 (62.2%)

Total 1060 (100.0%) 1060 (100%)

our method may over-constrain or under-constrain contents
during warping when video frames are filled with significant
objects or when all pixels or segmented objects have similar
significance values. In such scenarios, users are provided
with an interface to specify important contents that should
be preserved, or when over-constraining or under-constraining
occurs, linear rescaling is performed instead of mesh warping.

Accurate video segmentation is challenging. Our method
may encounter difficulties from failed video segmentation. For
example, a significant object cannot be preserved efficiently
when this object is grouped with several insignificant objects.
However, this case rarely occurs for a segmentation algo-
rithm. Failed segmentation generally occurs when an incorrect
saliency detection result is used in partition. As mentioned
earlier, this problem can be solved by using a user interface
that can manually mark important contents. Regarding the
problem of over-segmentation (the most common problem in
segmentation), our results are slightly sensitive to this case.
In over-segmentation, an object is partitioned into several
sub-objects. The shapes of these sub-objects are preserved
individually during warping. The retargeting quality is slightly
decreased, in terms of deformation consistency, compared with
warping an entire object.

V. CONCLUSIONS

This study introduces a novel content-aware retargeting
method for stereoscopic videos. The proposed content-aware
soft boundary weighting scheme and content preservation con-
straints enforce visually salient volumetric objects to undergo
as-rigid-as-possible and as-consistent-as possible deformation
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during warping. Moreover, the fixed critical region and crop-
ping window lead to easy volumetric cropping and better
temporal motion preservation, compared with the retargeting
using different critical regions in frames. The results of the
experiments, comparisons, as well as the qualitative and quan-
titative analyses demonstrate the superiority of the proposed
method over related methods in terms of retargeting quality.
Besides, The proposed scheme can be applied to various
media, including images, stereoscopic images, videos, and
stereoscopic videos with the consideration of shape, motion,
and disparity preservation.
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Fig. 9. Comparison of temporal motion preservation. From left to right: original video clip, retargeting results generated by Wang et al. [1], Wang et al. [17],
and the proposed method. The video frames, motion trajectories, and cropping windows are shown at the top of each example. The close-up views of the
motion trajectories are shown at the bottom of each example.
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Fig. 10. Comparison of disparity preservation among Chang et al. [21], Lin et al. [23], and the proposed method. The stereoscopic video frames are shown
in the first row of each example; the left frames with the selected feature points (marked by colors) are shown in the second row of each example; and the
depth distribution of the selected feature points are shown in the third row of each example.
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Lin et al. (2014) Proposed method Original video Chang et al. (2011) 

Fig. 11. Comparison of depth distortion. First row: original video frames and their disparity maps; second-fourth rows: the retargeting results and disparity
maps of Chang et al. [21], Lin et al. [23], and the proposed method.


