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Abstract We introduce a novel semi-blind-and-semi-
reversible robust watermarking scheme for three-dimensional
(3D) polygonal models. The proposed approach em-
beds watermarks in the significant features of 3D mod-
els in a spread-spectrum manner. This novel scheme
is robust against a wide variety of attacks including
rotation, translation, scaling, noise addition, smooth-
ing, mesh simplifications, vertex reordering, cropping,
and even pose deformation of meshes. To the best of
our knowledge, the existing approaches including blind,
semi-blind, and non-blind detection schemes cannot with-
stand the attack of pose editing, which is a very com-
mon routine in 3D animation. In addition, the water-
marked models can be semi-reversed (i.e., the peak signal-
to-noise ratio (PSNR) of the recovered models is greater
than 90dB in all experiments) in semi-blind detection
scheme. Experimental results show that this novel ap-
proach has many significant advantages in terms of ro-
bustness and invisibility over other state-of-the-art ap-
proaches.

Keywords Watermarking · copyright protection

1 Introduction

In the last decade, digital watermarking has become a
very active research area and has drawn a lot of atten-
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tion in the fields of ownership protection and authen-
tication [1]. Most efforts on watermarking have been
concentrated on various media data types such as doc-
ument, image, audio, and video. With the fast develop-
ment of 3D hardware, 3D computing and visualization
has become increasingly efficient. Furthermore, the uni-
versal popularity of 3D games has led to the widespread
use of 3D models in various applications such as digital
archiving, entertainment, Web3D, game industry, and
mechanical engineering. Therefore, the watermarking
of 3D models has gained increasing attention in recent
years. Although watermarking algorithms dedicated to
regularly sampled signals such as audio, image, and
video are reaching maturity, it is still very challenging
to extend these known algorithms to embed watermarks
on 3D models that are usually not regularly sampled.
The common purpose of robust watermarking is to hide
a watermark in digital contents in an imperceptive way
so that they can withstand various malicious attacks.
Therefore, robustness and invisibility are the main re-
quirements of a robust watermarking algorithm. In this
paper, we aim to utilize the geometric characteristics of
3D models to provide a robust watermarking algorithm
for ownership protection.

A watermarking technique that requires the origi-
nal multimedia data to detect the watermark is called
non-blind watermarking. On the other hand, a blind
scheme does not require the original multimedia data
to detect the watermark. Generally, in the literature,
non-blind schemes are more robust in detecting water-
marks or can withstand more malicious attacks than
blind schemes. However, non-blind approaches require
the original data to extract watermarks; therefore, the
multimedia industry appears to prefer blind schemes
due to their practicality. In this paper, we contribute
a novel semi-blind robust watermarking scheme for 3D
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polygonal models. Rather than require the original mod-
els, we only need a small amount of information to
detect watermarks. Remarkably, in contrast to other
blind, non-blind, and semi-blind schemes, our approach
is robust against a wider variety of attacks including
rotation, translation, scaling, noise addition, smooth-
ing, mesh simplifications (a special case of mesh re-
sampling), vertex reordering, cropping, and even pose
deformation of meshes.

Pose editing (or called pose deformation) is a use-
ful and common operation in 3D computer animation.
Users (or enemies) may attack watermark-embedded
models through editing their poses. A watermarking
algorithm must be robust against this type of attack.
However, to the best of our knowledge, the existing ap-
proaches [2–16] including blind, semi-blind, and non-
blind detection schemes cannot withstand this type of
attack because embedding positions are lost after the
vertex coordinates are significantly modified. Our ap-
proach embeds a watermark in the significant features
of the models, which are detected by the proposed similarity-
invariant curvature estimation approach. As long as the
significant features have not been severely damaged by
malicious attacks, our approach has a chance to success-
fully extract the watermark. Our approach embeds the
watermark by deforming the significant features with
shape constraints and successfully leads to impercepti-
ble watermark embedding. Moreover, our approach can
semi-recover the original models by deforming the wa-
termarked models back using only a little information
relative to the original models (m + 1 floats, where m
represents the number of bits in a watermark), i.e., the
semi-blind scheme. Experimental results show that our
watermarking scheme can withstand more types of at-
tacks than all previous approaches [2–16].

The remainder of the paper is organized as follows.
We review related works in Section 2. After briefly
summarizing the watermarking scheme in Section 3,
we describe it in detail in Section 4. Section 5 demon-
strates and discusses the experimental results. Section
6 concludes the proposed approach.

2 Related Work

Watermarking approaches can be categorized into ro-
bust watermarking [2–15] and fragile watermarking [17–
19] based on what objective the approaches want to
achieve. For fragile watermarking, the main purpose is
to detect slight changes for authenticating the integrity
of digital content. In contrast, robust watermarking is
designed to resist various attacks for copyright protec-
tion. In this paper, we concentrate on the robust water-
marking issue for 3D models. In this section, we will re-

view the related watermarking work for 3D models rep-
resented by the polygon format which is the most-used
digital representation of 3D models. As for other rep-
resentations, the readers can refer to [20] for 3D Non-
uniform Rational Basis Spline (NURBS) data, to [21]
for 3D models with texture data, and to [22] for point
data.

In [9], Praun et al. present a robust watermarking
approach that extends the concept of spread spectrum
[24] to 3D models. They identify the significant geo-
metric differences between the simplified and the orig-
inal models by using a multi-resolution analysis ap-
proach. Then each vertex in the identified areas is per-
turbed along the direction of its vertex normal. This
algorithm is robust against similarity transformation,
mesh smoothing, noise addition, and simplification at-
tacks using non-blind detection, i.e., requires the origi-
nal models to detect watermarks. Similar to [9], Date et
al. [11], Yin et al. [10], Ohbuchi et al. [7,8], Ashourian
et al. [2], and Benedens et al. [3,4] propose non-blind
watermarking approaches. A watermark is embedded in
the frequency domain, coarse mesh, mesh spectral do-
main, spherical domain, or vertex normals. However, all
above algorithms proceed the time-consuming processes
of model alignment and initial connectivity recovery
with the original models to extract embedded water-
marks. In this paper, these two processes are avoided
using a semi-blind detection approach. We only require
a small amount of information instead of the entire
models.

In contrast to non-blind detection, blind detection
schemes [5,6,12–14] only need to use a private key to de-
tect watermarks. In general, blind detection is achieved
by aligning the models with the principal axes gen-
erated by principal component analysis (PCA). How-
ever, these approaches cannot generally resist cropping
and pose deformation attacks because such attacks can
cause significant alteration to both the principal ob-
ject axes and the mass center. Recently, Lee et al. [15]
present an interesting semi-blind detection approach
that requires storing the sampling density and some pa-
rameters to extract watermarks. They iteratively project
the models onto two constrained convex sets and then
embed watermarks by modifying the sample means of
components in the convex sets. Compared with blind
detection approaches [5,6,12–14], this approach can re-
sist cropping attacks. However, this approach is time
consuming (about 30 minutes) and cannot resist pose
deformation attacks. In contrast, our approach can re-
sist cropping and pose deformation attacks in addi-
tion to other general attacks. Furthermore, compared to
[15], our watermark extraction is more efficient (about
30 seconds for a model with 50,000 vertices). In the
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past, many efforts on watermarking have been concen-
trated on images. Based on image watermarking, an
alternative approach is to embed watermarks on geom-
etry images of 3D models [23]. However, the distortion
problem of geometry images makes them difficult in
handling 3D models with complex shapes.

3 System Overview

The proposed watermarking scheme consists of two sep-
arate procedures, the embedding procedure and the de-
tection procedure. Both have two major steps: signifi-
cant patch determination and patch sorting. The overview
of the embedding procedure is described as follows. To
consider perceptual invisibility, the watermark is em-
bedded in significant patches, i.e., high-curvature areas,
of the 3D models. We propose a curvature estimation
approach to determine these embedding patches (Fig-
ure 1(a), Section 4.1). To determine the embedding
order, we sort the embedding patches by geodesic dis-
tances that are insensitive to various aforementioned
attacks (Figure 1(b), Section 4.2). Finally, each bit of
watermark is embedded in one embedding patch by a
feature-preserving deformation approach (Section 4.3).
This step is very efficient because all patches are si-
multaneously embedded by solving a least-square mini-
mization equation. Instead of the entire model, we only
store the mean curvatures of m patches (m floats), em-
bedding amplitude (1 float), and the watermark for
watermark detection. In the detection procedure, the
embedding positions and embedding order of the sus-
pected models can be obtained in the same steps. The
watermark is then extracted by comparing the embed-
ding patch curvatures in the suspected model with the
stored curvature information.

Fig. 1 The workflow of the proposed watermark embedding. (a)
The original model; (b) the significant patches (visualized by yel-

low); (c) the sorting result of significant patches (the order is

visualized by color starting from red to yellow); (d) the water-
marking result.

4 Watermark Embedding

4.1 Significant Patch Determination

In the proposed approach,the watermark is embedded
in the 3D models in a spread-spectrum manner. The

spread-spectrum technique is to transform the digital
media to the frequency domain and perturb the coef-
ficients of the most significant basis functions for em-
bedding the watermark [24]. However, the polygonal
models lack a natural approach for frequency-based de-
composition. To apply the spread spectrum technique
to the polygonal models, the significant patches are de-
tected first and the vertices in each patch are then per-
turbed. In [9], the significant patches are determined by
a multi-resolution analysis approach [25]. In their work,
the original model is represented as a progressive mesh
format consisting of a coarse base mesh and a sequence
of refinement operations.

Each vertex in the base mesh corresponds to a sig-
nificant patch in the original model. Therefore, the sig-
nificant patches are determined by directly selecting
the vertices in the base mesh with the largest geomet-
ric magnitudes between the base mesh and the original
model. For a non-blind detection scheme [9], this patch
determination approach is robust against various at-
tacks since the original models are stored. However, for
a blind or semi-blind detection scheme, this approach is
sensitive to attacks of noise addition, mesh smoothing,
and pose deformation since these attacks can poten-
tially and significantly alter the selection order of col-
lapsed edges, i.e., model simplification. The main chal-
lenge of embedding position determination in a blind
or semi-blind detection scheme is that it must be in-
sensitive to various malicious attacks. In this paper, a
novel approach based on a similarity-invariant curva-
ture estimation is proposed for determining embedding
positions. This approach is described as follows.

The first step is to estimate the surface curvatures.
Several excellent previous works generalize the curva-
ture estimation in the differential geometry to the dis-
crete polygon mesh [26–28]. In this paper, the approach
presented by Alliez et al. [28] is extended to compute
the mean curvatures of 3D models. Let κ(v) represents
the mean curvature of a vertex v and NE(v) represents
the set of edges in the neighborhood of a vertex v. A
local curvature of an edge can simply be estimated as
the angle between the two faces adjacent to this edge.
Therefore, the curvature κ(v) can be formulated as the
integral of local curvature over the vertex neighborhood
B (see Eq. 1 and Figure 2). The main drawback of
this estimation is that the local curvature is sensitive
to noise. To withstand the attack of noise addition, we
de-noise the face normal by a smoothing filter F before
computing the vertex curvature. In addition, to with-
stand the attack of scaling, we normalize the curvature.
Therefore, the mean curvature of a vertex v is formu-
lated as follows:
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κ(v) =

∑
e∈NE(v) ‖e ∩B‖‖F ∗ nfi

− F ∗ nfj
‖∑

e∈NE(v) ‖e ∩B‖
,

F ∗ nfk
=

∑
fl∈NE(fk)

(
nfl

exp[−dist(fl, v)2/σ2]
)∑

fl∈NE(fk) (exp[−dist(fl, v)2/σ2])
(1)

where nfi
and nfj

represent the normals of two adja-
cent faces of an edge e (see Figure 2). F represents a
smooth Gaussian filter, and the symbol ’∗’ denotes con-
volution operation. ‖e∩B‖ is the length of edge e in the
neighborhood B. In the smooth filter, fk represents a
face in the vertex neighborhood B, NF (fk) represents
a face set of fk’s neighborhood, and σ represents the
Gaussian’s standard deviation. The distance function
dist(fl, v) returns the distance between the center of
face fl and vertex v.

Fig. 2 An illustration of curvature calculation.

Once the surface mean curvatures are obtained, a
region-growing strategy is adopted to determine the sig-
nificant patches. Only the high-curvature vertices are
selected as the growing areas (the top 30% high-curvature
vertices in all experiments), and the vertices with a
local maximal curvature are selected as the growing
seeds. In the expansion step, for each seed, we sim-
ply find the maximal connected region, i.e., patch, in
the growing areas. In other words, the high-curvature
connected vertices are merged to become a patch for
embedding watermark. Taking the robustness into ac-
count, the patches containing only a few vertices (less
than 0.5% number of vertices in the model) are fil-
tered out. The remaining patches are called significant
patches and used for watermark embedding. Note that
the number of extracted patches depends on the param-
eter setting of the smoothing kernel size, i.e., σ (set to
1.5% of the diagonal of the object bounding box in the
experiments), and the threshold for the growing areas.
It is well known in the field of data hiding that there
is a tradeoff between embedding capacity and robust-
ness. If more data need to be hidden in a model, then
some patches in the small detailed features of the mod-
els would be selected for embedding, leading to weak
robustness. It is because that the small detailed fea-
tures are sensitive to the attacks of noise addition and
mesh smoothing. In the application of ownership pro-
tection, robustness is more important than embedding

capacity. Therefore, we select a large size of smoothing
kernel as well as large patches for watermark embed-
ding.

4.2 Patch Sorting

To embed a bit string, i.e., watermark, to a model, we
must determine the embedding order. The approach
for determining embedding order must also be robust
against aforementioned attacks. In the proposed ap-
proach, the embedding order is determined by the geodesic
distances among the significant patches obtained in Sec-
tion 4.1. First, within each patch, we select the vertex
with maximal curvature as its representative vertex and
compute the average curvature of the vertices in this
patch as its representative value, called salient value.
Among all significant patches, we call the patch with
maximal salient value as the pivot patch. All patches
are sorted according to the geodesic distance between
the pivot patch and the other patches. We do not sort
them using Euclidean distance since its distance can
be significantly altered when the pose deformation is
applied to 3D models. Figure 3 illustrates the order of
patch sorting using geodesic distance; this order will
be not changed by a pose deformation attack. How-
ever, obviously, if this sorting order is determined by
Euclidean distance, it will be greatly altered (see red
dashed-line paths in Figure 3). In our approach, there
are two reasons to select the patch with maximal salient
value as the pivot patch. First, the patch with the high-
est salient value implies that it is the most robust one
in withstanding various malicious attacks. Second, it is
generally the most significant patch in a model. If the
most significant patch is severely damaged, for example,
by cropping, the attacked model could become mean-
ingless for people. In Figure 3, we show several examples
of the significant patch determination and sorting.

Fig. 3 An illustration of the patch sorting by geodesic distance.

The thick blue lines show the paths between two patches found
by the shortest geodesic distance. The red dashed lines show the
shortest Euclidean distance between two patches and their values

will be changed significantly after the attack.

4.3 Watermark Embedding

A 3D polygonal model can be described as a pair (K,V ),
where K is a simplicial complex representing the con-
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Fig. 4 Top: the mean curvatures encoded by colors ranging from
dark green (low curvature) to light green (high curvature); Bot-

tom: the extracted significant patches and their sorting results

(the order is also represented by colors starting from red (the
most important patch) to yellow (the least important patch)).

nectivity of vertices, edges, and faces; V is the vertex
positions in R3. The differential coordinate δi of vertex
vi is defined as follows:

δi =
∑

(i,j)∈K

wij(vi − vj), (2)

where wij is the weights for approximating the contin-
uous Laplace operator. Here, we adopt the cotangent
weights [27].

We embed a watermark {mi}mi=1 containing m bits
by deforming the significant patches along the differen-
tial coordinates. Specifically, it is achieved by multiply-
ing the differential coordinates δi of vertices vi in the
significant patches with the defined scale factor h (the
embedding amplitude, h is set to 0.1 in all experiments)
and fixing the differential coordinates of the vertices in
the other regions. That is,

δ′i =
{
δi + hmkδi, if vi belongs to Pk

δi, otherwise
(3)

where Pk is the kth significant patch.
To correctly extract the pivot patch (a patch with

the largest salient value), we do not minify the differ-
ential coordinates of vertices (minifying differential co-
ordinates will lower the salient value). Therefore, the
differential coordinates of vertices are either magnified
or unchanged in the Eq. 3. The effect of simply mag-
nifying only the differential coordinates is similar to
directly enlarging the local shapes. It potentially re-
sults in a larger distortion of the embedded models and
therefore less robust embeddings. To solve this prob-
lem, we add edge constraints to enforce the length and
direction of the edges in the original models on the de-
formed models, i.e., watermarked meshes. Taking into
account the aforementioned constraints and the vertices
in other non-embedded regions, the watermark embed-
ding is formulated as follows:

arg min
V ′

∑
vi∈V

‖δi − δ′i‖2 + α
∑

(i,j)∈K

‖eij − (v′j − v′i)‖2

+β
∑
vi∈U

‖vi − v′i‖2
)

(4)

where U represents the set of fixed vertices (the ver-
tices not in the significant patches or the vertices in the
significant patch Pk and their embedded bit is 0, i.e.,
mk = 0; eij = (vj − vi); α and β are the weighting
factors for the edge constraints and vertex constraints,
respectively. To fix the vertices whose embedding bit is
0, we give a larger weight for β and a smaller weight for
α to enforce the vertex constraints α is set to 0.1 and
β is set to 1.0 in all experiments).

In practice, Eq. 4 is solved by an over-determined
linear system Ax = b (see Eq. 5) in an iterative man-
ner [29]. The minimization solving is very efficient since
the system matrix A is sparse, and all entities are fixed
(they contain the Laplacian matrix Lij , edge-constraint
matrix Eij , and vertex-constraint matrix Cij). There-
fore, the factorization of matrixATA can be pre-computed
and therefore there is only a back-substitution required
for each iteration.

Lij

Eij

Cij

 [V ′] =

 δ′ijkij

vij

 , (5)

where Lij =


1, if i = j

−wij , if (i, j) ∈ K
0, otherwise.

, Cij =
{
β, if vi ∈ U
0, otherwise.

and Eij =
{
Eii = −α,Eij = α, if (i, j) ∈ K
0, otherwise.

Under the same embedding amplitude, i.e., when
the vertex offsets induced by the watermark embed-
ding is identical, the embedding results generated by
our approach are better in terms of invisibility than
those generated by the approach [9]. It is because that
the approach [9] is to directly enlarge the models in nor-
mal directions (as shown in Figure 5(a)). In contrast,
we preserve the shape feature when the vertex differ-
ential coordinates are enlarged (as shown in Figure 5
(b)).

4.4 Watermark Extraction

To extract a m-bit watermark, we need 1) the salient
value S of each significant patch (i.e., m floats for m
patches) and 2) the embedding amplitude h (1 float).
Therefore, we only need to store these (m + 1) float
data instead of the entire original model. The extrac-
tion process is similar to the embedding process. The
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Fig. 5 An illustration of the comparison between (a) perturbing
vertices along the direction of normal and (b) perturbing vertices

by deforming the local shapes with constraints (Eq. 5).

significant patches are extracted from the suspected
model first and then the extracted patches are sorted
by geodesic distances. By considering the difference be-
tween the salient value S∗i of the ith patch (i.e., sorted
by geodesic distances) in the suspect models and the
corresponding Si in the stored data, we can extract the
watermark m∗i . Specifically, our watermarking extrac-
tion can be formulated as follows:

m∗i =


1, if 0.5h ≤ |S

∗
i −Si|
Si

< 1.5h
0, if |S

∗
i −Si|
Si

< 0.5h
false, otherwise

(6)

where h is the embedding amplitude, and ”false” means
extracting nothing.

Watermark analysis. The watermark analysis is
simply achieved by comparing the inserted and extracted
watermarks bit-by-bit. However, when the watermarked
models are attacked by cropping, some significant patches
could be cropped. This leads to an unsuccessful water-
mark matching. A bit-shifting approach is used here if
the suspected models had been cropped. This approach
simply shifts the mismatched bit to the right one in or-
der to test if the following bits in the watermark are
matched better, as shown in Figure 6. The third and
sixth bits are mismatched, and the watermark is shifted
right twice.

Fig. 6 An example of bit shifting.

Since our watermark is embedded in high-curvature
regions, the smoothing attack could significantly alter
the curvature, and therefore the embedded watermark
could potentially be destroyed. To strengthen the ro-
bustness of our approach in withstanding the smooth-

ing attack, we approximately align the salient values Si

and S∗i by using the following:

S′i = S∗i + offset, i = 1, ...,m

offset =
1
m

m∑
i=1

(Si − S∗i ) (7)

Note that the processes of bit shifting and salient
value alignment could increase the probability of Type
II error [30], i.e., the error of not rejecting a false bit.
To solve this problem, we perform this alignment only
on the condition that Si > S∗i for all i, and perform
the bit shifting on the condition that the bit error rate
(BER), i.e., (the number of false bits / the number of
correct bits)∗100%, is significantly reduced (20% in all
experiments) after shifting the watermark starting from
a false bit.

Model recovery. The proposed approach can semi-
recover the original models after extracting the water-
marks. It is achieved by deforming the watermarked
model back. We divide the vertex differential coordi-
nates δ∗ in the significant patches P ∗ by (1 + hm∗) ,
and fix the differential coordinates of vertices in the
other regions. That is,

δ′i =
{
δ∗i /(1 + hm∗k), if v∗i belongs to P ∗k
δ∗i , otherwise

(8)

where P ∗k is the kth significant patch.
Then a recovered model is obtained by solving Eq. 5.

Table 1 shows the PSNR rates of the watermarked and
recovered models. PSNR is calculated via the root mean
squared error (RMSE) between the original model and
the evaluated model (watermarked or recovered mod-

els). The RMSE is defined as
√

1
|V |Σ

|V |
i ‖vi − v′i‖2, and

the PSNR is defined as 20 log10(Dmax/
√
MSE), where

Dmax represents the diagonal distance of the bound-
ing box of the original model. In Table 1, the PSNR
statistics are all above 70dB for the watermarked mod-
els (the range of PSNR is [0,∞] and the acceptable val-
ues for 3D modeling are considered to be about 60dB to
70dB). It implies that the alteration of the watermarked
models is imperceptible with respect to the human vi-
sual system. After deforming the watermarked models
back, the PSNR rates of the recovered models increase
about 20dB. In other words, the recovered models are
almost equivalent to the original models. Note that it is
very difficult (or impossible) to completely recover the
watermarked models because the 3D models are rep-
resented by finite precision floating points. Therefore,
there are some truncation errors in any floating opera-
tion.
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Table 1 A statistics of model distortions in the watermarked
and recovered models.

Embedded
73.25 76.60 74.39 87.24 87.69 81.46models (dB)

Recovered
93.72 93.50 97.74 108.11 110.67 104.18models (dB)

Fig. 7 Various test models. The #V and #F represent the num-

ber of vertices and faces, respectively. The mean curvatures are

encoded by colors ranging from dark green (low curvature) to
light green (high curvature).

5 Experimental Results

To validate the feasibility of the proposed approach,
various 3D models are selected in the experiments, as
shown in Figure 7. The proposed watermarking sys-
tem is based on the significant patch determination and
patch sorting. Therefore, we start this section with the
experiments of testing if they are robust against various
attacks including noise addition, smoothing, cropping,
simplification (a special case of mesh re-sampling), and
pose deformation (see Figures 8 – 10). The embedding
order is visualized by colors starting from red to yellow.
We can see that the significant patches and embedding
orders can be accurately obtained even though the mod-
els are altered by these attacks. In contrast to the pre-
vious blind detection approaches [5,6,12–14] that will
fail under the attacks of cropping and pose deformation
(see Figure 11), the proposed approach can still resist
these two types of attacks (see Figures 8 – 10 (d) and
Figure 9 (c)) since the surface curvature is only slightly
altered.

To demonstrate the robustness of our watermarking
approach, a variety of malicious attacks including noise
addition, smoothing, cropping, vertex reordering, sim-
plification, and pose deformation are tested. The exper-
imental statistics are shown in Tables 2 – 3. To fairly
evaluate our method, the configuration of all parame-
ters in the watermark embedding algorithm is identical

Fig. 8 (a) The original model; (b) noise addition, (c) smoothing

and (d) cropping attacks.

Fig. 9 (a) The original Model; (b) noise addition, (c) pose de-
formation and (d) cropping attacks.

Fig. 10 (a) The original Model; (b) noise addition, (c) simplifi-
cation and (d) cropping attacks.

Fig. 11 Determining the embedding positions by PCA. Left:
original model; Middle: cropping attack; Right: pose deformation

attack. In addition, we show the PCA axes for each case.

in all experiments (the size of smoothing kernel σ is
set to 1.5% of the diagonal of the bounding box; the
growing regions: the top 30% vertices; embedding am-
plitude h = 0.1; the weights for edge and vertex con-
straints: α = 0.1, β = 1.0; the size of watermark: 12
bits). BER is used to evaluate the robustness. Various
magnitudes of attacks are also tested in these exper-
iments. In the 1st group of Table 2 (noise addition
attack), various noise magnitudes are tested. The ’%’
represents the noise magnitude as a fraction of the di-
agonal distance of the bounding box. The noise effects
on the 3D models are shown in Figure 12. The statis-
tics show that our approach is slightly sensitive to the
noise addition when the noise magnitude is greater than
0.08%. This is because the magnitude of the noise at-
tack is greater than the watermarking magnitude, i.e.,
the model deformation (determined by the embedding
magnitude h, see Eq. 3). In the 2nd–4th groups of Table
2 (the cropping (see Figure 13), pose deformation (see
Figure 14) and vertex reordering attacks), the statistics
show that our approach can withstand these attacks. In
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Table 2 A statistics of robustness estimation (using BER). 1st
group: the noise addition attack (Guassian noise). The ’%’ in this

group represents the noise magnitude (variance) as a fraction of

the diagonal distance of the bounding box. 2nd group: the crop-
ping attacks (Crop.). Two arbitrary cropping attacks (Crop.1 and

Crop.2) are tested, and the removed bits of watermark do not be
included in the estimation of BER. 3rd group: the pose deforma-

tion attack (P.D.). Two arbitrary pose deformations (P.D.1 and

P.D.2) are tested here. The notation ’-’ represents no experiments.
4th group: the vertex reordering attack (V.R.). ’N’ represents a

failure in the process of significant patch extraction.

Attacks

N
o
is

e
A

d
d

it
io

n 0.02% 0% 0% 0% 0% 0% 0% 0% 0%

0.04% 0% 0% 0% 8% 16% 16% 8% 16%

0.06% 0% 0% 8% 16% 16% 16% 16% 16%

0.08% 0% N 16% 16% 33% 16% 25% N

0.10% 8% N 16% 25% 33% 66% 33% N

0.12% 25% N 33% 25% 42% N N N

Crop.1 0% 0% 0% 0% 0% 0% 0% 0%

Crop.2 0% 0% 0% 0% 0% 0% 0% 0%

P.D.1 0% - - 0% 0% - - -

P.D.2 0% - - 0% 10% - - -

V.R 0% 0% 0% 0% 0% 0% 0% 0%

Table 3 Statistics of robustness estimation (using BER). 1st

group: the smoothing attack. The ’%’ in this group represents the

smoothing strength as a fraction of the differential coordinates.

2nd group: the simplification attacks (Crop.). The ’%’ in this
group represents that the percentage of the number of vertices in

the original models is simplified.

Attacks

S
m

o
o
th

in
g

5% 0% 0% 0% 0% 0% 0%

10% 0% 0% 0% 16% 0% 0%

15% 0% 0% 0% 16% 0% 0%

20% 8% 0% 0% 16% 0% 0%

25% 8% 0% 0% 16% 0% 0%

30% 16% 0% 0% 25% 0% 0%

35% 16% 0% 0% 25% 0% 0%

40% 16% 16% 0% N 0% N

S
im

p
li
fi

ca
ti

o
n 5% 0% 0% 0% 0% 0% 0%

10% 0% 0% 16% 0% 8% 25%

15% 0% 0% 16% 16% 8% 33%

20% 16% 0% 16% 16% 8% N

25% 42% 16% N 25% 8% N

the 1st group of Table 3 (the smoothing attack), the
smoothing filter [32] with various smoothing strengths
is applied to the vertex coordinates (only one iteration).
The ’%’ represents the smoothing strength as a fraction
of the differential coordinates. The statistics show that
our approach is robust until the smoothing strength is
greater than 40%. In the 2nd group of Table 3 (the sim-

plification attack), the QSlim algorithm [34] is adopted.
The statistics show that our approach weakly withstand
this attack when the size of the simplified data is greater
than 20%. Note that there is a tradeoff between ro-
bustness and invisibility in a watermarking system. If a
larger embedding amplitude is used to embed the water-
mark, a more robust but less invisible watermarking is
obtained. Therefore, our approach will be more robust
against these malicious attacks if a larger deformation,
i.e., h, is applied to the 3D models.

Fig. 12 The models suffering from the noise attack.

Fig. 13 The models suffered from the cropping attack.

Fig. 14 Left: The original models; Right: the models suffered

from the pose deformation attack.

Table 4 shows a theoretical comparison between the
proposed approach and the related watermarking ap-
proaches [3,6,8,9,12,13,15] including the blind, semi-
blind, and non-blind detection schemes. In the non-
blind detection schemes [8,9], the approaches cannot
withstand the pose deformation attack since the water-
mark detection will fail in the processes of model align-
ment and original connectivity restoration. In addition,
these two approaches require the original model to ex-
tract watermarks. In contrast, our approach can resist
the attack of pose deformation while only requiring a
small amount of information to extract watermarks. In
the blind detection schemes [6,12,13], the approaches
cannot resist the cropping and pose deformation attacks
since these attacks will cause severe alteration to both
the principal object axis and the mass center. In our
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Table 4 The comparisons between our approach and the related approaches. Here, the symbols ’χ,’ ’4,’ and ’
√

’ indicate that the
approach cannot withstand, can withstand, or can absolutely withstand attacks (i.e., BER=0%), respectively. (1), (2), and (3) indicate

the blind, semi-blind, and non-blind detection schemes, respectively.

Our approach [15] [13] [12] [6] [3] [9] [8]
Detection Scheme (2) (2) (1) (1) (1) (1) (3) (3)

(A
tt

a
ck

s)

Simplification 4 4 4 χ χ 4 4 4
Cropping 4 4 χ χ χ χ 4 4

Noise 4 4 4 4 4 4 4 4
Smoothing 4 4 4 4 χ 4 4 4

Similarity transform
√ √ √ √ √ √ √ √

Vertex reordering
√ √ √ √ √ √ √ √

Pose Deformation 4 χ χ χ χ χ χ χ

approach, the embedding positions are determined by
the proposed similarity-invariant curvature estimation
approach instead of the PCA approach. The problems
mentioned above can be avoided, and thus the cropping
and pose deformation attacks can be resisted. In the
semi-blind detection scheme [15], the approach cannot
also resist the pose deformation attack, while the em-
bedding or extraction process is time consuming (about
30 minutes). In contrast, our approach can resist this
attack, and the algorithm is efficient (about 30 seconds
for a model with 50,000 vertices).

6 Conclusions, Limitations and Future Work

We propose a novel semi-blind, semi-revisable robust
watermarking scheme for 3D polygon models. The ex-
perimental results show that our approach is robust
against a wide variety of attacks, including similarity
transformation, noise addition, smoothing, cropping, ver-
tex reordering, simplification, and even pose deforma-
tion. In addition, our approach has the ability to semi-
recover the original models. Currently, the proposed
approach has the following two limitations. Our ap-
proach is not suitable to handle the models that have
smooth shapes as well as few protrusive patches, such
as sphere and knot, since we select protrusive patches,
i.e., high curvature patches, to embed watermarks. The
other limitation is that our approach cannot resist the
attacks of non-uniform scaling, shearing, and even free-
form deformation since these attacks could cause severe
alteration to the surface curvature. In addition, they are
usually considered as intentional degradations of the
mesh shape. While in this paper we focus on 3D mesh,
some directions for future work are to provide water-
marking approaches for 3D models with skeletons [33],
deformable meshes [31], and deformable volume data
[35], since these data have gained increasing attention
in some popular applications.
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