
SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Double-sided 2.5D Graphics
Chih-Kuo Yeh, Peng Song, Peng-Yen Lin, Chi-Wing Fu, Chao-Hung Lin and Tong-Yee Lee

Abstract—This paper introduces double-sided 2.5D graphics, aiming at enriching the visual appearance when manipulating
conventional 2D graphical objects in 2.5D worlds. By attaching a back texture image on a single-sided 2D graphical object,
we can enrich the surface and texture detail on 2D graphical objects and improve our visual experience when manipulating
and animating them. A family of novel operations on 2.5D graphics, including rolling, twisting, and folding, are proposed in
this work, allowing users to efficiently create compelling 2.5D visual effects. Very little effort is needed from the user’s side. In
our experiment, various creative designs on double-sided graphics were worked out by the recruited participants including a
professional artist, which show and demonstrate the feasibility and applicability of our proposed method.

Index Terms—2.5D modeling, vector art, layering.

F

1 INTRODUCTION
2D or 2.5D graphics have attracted great interests
in a wide range of areas due to their simplicity
and elegance for delivering conceptual and aesthetic-
stylized art forms used in applications like manga,
cartoon, and desktop publishing design. In this do-
main, the graphical elements are basically 2D meshes,
raster images, and vector graphics without any 3D
information. At the same time, the spatial scene can be
2.5D, meaning that layering can be used to order the
graphical elements in the scene to produce a visual
illusion of proximity and occlusion among the on-
stage 2D objects.

Recent research in 2.5D graphics usually focuses on
the creation of visual effects to bring out appealing
and interesting visual perception to the audience. For
instance, McCann and Pollard [1] developed the local
layering method to create flexible and partial layering
of 2D graphical objects, hence enabling more com-
pelling and complicated local occlusion effects among
the graphical elements in 2.5D worlds. Barnes et al. [2]
developed a video-based puppetry system for users
to quickly create interesting cutout-style and stop-
motion animations. More recently, Rivers et al. [3]
invented a new layer representation for 2.5D cartoon
models so that 3D rotation effects can be achieved
even on 2D cartoon characters.

Following the spirit of these recent works in enrich-
ing 2.5D graphics, this paper proposes the novel idea
of making generic 2D graphics to be double-sided, so that
we can take advantage of the back image to provide
additional information for 2.5D graphics. Moreover,
we develop a set of easy-to-use and user-manipulatable

• Chih-Kuo Yeh, Peng-Yen Lin, Chao-Hung Lin and Tong-Yee Lee
are with the Department of Computer Science and Information
Engineering, National Cheng-Kung University, Taiwan, R.O.C.

• Peng Song and Chi-Wing Fu are with Nanyang Technological Uni-
versity, Singapore.

visual effects: by using front and back images together,
these new operations can greatly improve our ability
to model and illustrate graphics in the 2.5D world:

• Rolling: exposes a fraction of the object’s back
image along part of its silhouette to produce an
effect of a small-scale pseudo rotation;

• Twisting: produces a winding visual effect lo-
cally/globally on a double-sided graphics by
mashing both the front and back texture images;

• Folding: partially or fully exposes the back image
of a 2D graphical object and makes it self-layered
in 2.5D. In addition, the folding boundary can be
reshaped to improve the folding effect.

Furthermore, these operations can be applied either
locally or globally on a given double-sided graphic
tailored for the desired visual effects needed by the
users. Compared to the related works on 2.5D graph-
ics modeling and manipulation, the main advantage
of our proposed method is that it does not require any
explicit/partial depth information or correspondence
sketches through multiple views. Yet it can produce
compelling visual effects on 2.5D graphics with very
little modeling effort. Moreover, a family of easy-to-
use operations is also designed and developed to
maximize the usability and utilization of the back
images. Lastly, various 2.5D graphical objects are pre-
sented in this work and we recruited also a number of
participants including a professional artist to try out
our proposed interactive system.

The remainder of this paper is organized as follows.
After the related work section (Section 2), Section 3
describes the modeling and manipulation of double-
sided graphics and Section 4 presents our proposed
operations to edit double-sided 2.5D graphics. Sec-
tion 5 describes the user interface and the interaction
procedures whereas Section 6 showcases the visual
effects and interaction on assorted 2.5D graphics. At
the end, Section 7 draws the conclusions.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

2 RELATED WORK

In recent years, 2.5D graphical elements have been
gaining increasing attention, and several related ap-
proaches such as [1], [3], [4] have been proposed
to work on them. In the work of McCann and Pol-
lard [1], they proposed a local layering technique,
allowing 2D graphical objects to overlap one another
partially and locally. This technique generalizes the
general depth ordering mechanism in conventional
2.5D modeling systems, and enables the design of
more complicated visual effects with layering. More
recently, McCann [4] proposed the soft stacking idea,
where a certain layer/object can be mixed with one
another in a volumetric or fog-like manner. By this,
the volumetric media can be brought to 2.5D worlds,
and foggy effects can be created. Another recent work
is the 2.5D cartoon modeling method proposed by
Rivers et al. [3]. They created a 2.5D cartoon model
by associating depth layers on user-drawn strokes.
Following the spirit of these 2.5D modeling work,
we aim at enriching the visual appearance when
manipulating 2D graphical objects in 2.5D world.
Consequently, our work is more closely-related to [1],
[4] in terms of producing 2.5D visual effects with
the proposed modeling strategies, rather than making
2.5D models to be fully 3D-rotatable as in [3].

Sketch-based modeling and animation [5], [6], [7],
[8], [9], [10] is another stream of research highly
related to this work. Robert et al. [5], Igarashi et
al. [6], [9], and Karpenko et al. [7] proposed various
compelling sketch-based interfaces for 2.5D or 3D
modeling. These work focused on providing an in-
tuitive user interface and inferring depth information
from sketches that are drawn on single or multiple
views. In the work of Nealen et al. [8], a system called
FiberMesh is proposed to build a 3D model by a
collection of 3D curves. More recently, Li et al. [10]
proposed a system that creates cartoon facial anima-
tion from multi-view hand-drawn sketches. On the
contrary, the goal of our proposed interface is to create
interesting visual effects with 2.5D graphics by taking
advantages of the back images rather than creating
3D information. Hence, we do not require inferring
of depth information or correspondence sketching
through single or multiple views.

Other related research work includes the follow-
ings. Winnemoller et al. [11] proposed a system that
allows artists to design normal fields and texture
maps to achieve the desired effects on image space.
Di Fiore et al. [12] proposed the use of 3D skeletons
to generate in-between views in hand-drawn cartoon
by a multi-level 2.5D modeling approach. Igarashi et
al. [13] introduced an as-rigid-as-possible 2D shape
manipulation technique with multitouch capability,
while Wiley [14] presented a vector-graphics draw-
ing system, called Druid, which can handle self-
overlapping surfaces by labeling the intersections of

Fig. 1: Left: the front image; right: the back image; middle:
the boundary-aware triangulation.

boundary curves. Eitz et al. [15] presented an image
editing tool with a sketch-based interface, allowing
users to deform and composite image regions in-
tuitively. Barnes et al. [2] developed a video-based
puppetry system for cutout-style and stop-motion
animations. Sýkora et al. [16] employed block-based
shape regularization to preserve local rigidity in hand-
drawn cartoon animations while Baxter et al. [17]
developed a method that models a 2D animation as an
N-way morphing problem. In our proposed approach,
we develop novel ideas of making 2D graphics double-
sided and making use of the back images to produce a
novel set of visual effects for the 2.5D worlds. A family
of novel and easy-to-use operations are also designed
and proposed to support the creation of these visual
effects and the manipulation of the 2D shapes.

3 MODELING AND SHAPE MANIPULATION
OF DOUBLE-SIDED 2.5D GRAPHICS

3.1 Modeling double-sided 2.5D graphics
Input to our system are double-sided 2D graphics
with both front and back texture images (see the
left and right figures in Fig. 1). For two common
formats for 2D graphics, bitmap images require higher
resolution and anti-aliasing while vector graphics on
the other hand are defined mathematically and thus
can be smooth at any scale and resolution. To avoid
jaggy and blurry effects in editing, scalable vector
graphics (SVG) are adopted as our input.

In addition, to support the proposed operations on
the double-sided graphics, the input shape is first
triangulated to generate a 2D shape mesh. However,
rather than a regular triangulation, we propose to
triangulate the shape adaptively (see Fig. 1 (middle)),
so that the representation can lead to more cost-
efficient computation to support our proposed 2.5D
operations while preserving the smoothness in the
deformed silhouette. Note that this boundary-aware
triangulation is implemented by first sampling the
input shape according to the local distance to the
shape boundary; after that, constrained Delaunay tri-
angulation is adopted to generate the shape mesh.
Lastly, attributes including the visible side (front or
back) and uv-coordinates, i.e., the coordinates in the
parametric space, are attached to each mesh vertex,
see next subsection.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

3.2 Shape Manipulation

To support the proposed 2.5D operations, we also
need a basic engine for performing 2D shape manip-
ulation: rotate, squash, stretch, and deform an input
shape according to the user’s specified point handles.
Regarding this, we apply and integrate the as-rigid-
as-possible shape manipulation method by Igarashi et
al. [13] and the concept of conformal energy by Zhang
et al. [18], and then tailor the engine for SVGs.

Since the input SVG is mathematically described,
our shape manipulation engine begins by first con-
verting the mathematical descriptions, i.e., the B-
spline curves in SVG, to line segments, and then con-
structs the boundary-aware triangulation based on the
current screen resolution. Without loss of generality,
the shape mesh is denoted by M = {V,E,F}, where
V = [vT

0 ,vT
1 , ...vT

n] denotes a set of vertex v = (x, y)
in R2, E denotes a set of edges, and F denotes a set
of triangles (faces). The conformal energy introduced
in [18] is utilized to preserve the shape in deforma-
tion, i.e., minimizing the shape distortion between the
original and deformed triangles. Specifically, a vertex
in a shape mesh is transformed by[

s −r
r s

] [
x
y

]
+

[
u
v

]
=

[
x′

y′

]
, (1)

where s and r represent the scaling and rotation fac-
tors, respectively, and [u, v]t is the translation vector.
Let vi1 ,vi2 ,vi3 be the vertices of a face f , and define

Af =

xi1 −yi1 1 0
yi1 xi1 0 1
...

...
...

...
xi3 −yi3 1 0
yi3 xi3 0 1

 , bf ′ =

x′i1
y′i1
...

x′i3
y′i3

 , (2)

we can obtain the equation Af [s, r, u, v]T = bf ′ .
This equation can be transformed into Ωs =
(Af (AT

f AT)−1AT
f − I)bf ′ = 0, where the optimiza-

tion [s, r, u, v]T = (AT
f Af)−1AT

f bf ′ , see also [18]. In
addition, the deformed mesh, say M′, must satisfy
the given handle constraints. Let H be a set of handle
positions that are used to manipulate or deform the
input shape. ΩH =

∑
i∈H ‖v′i − Hi‖2, where Hi

is the i-th handle position. The deformed mesh M′

is then solved by minimizing
∑

f Ωs + wΩH , where
w = 1000 in all our experiment. This optimization
can be solved by a linear least-squares equation. As
mentioned in [13], the above solver does not yield an
as-rigid-as-possible deformed mesh, and thus requires
a second optimization step to adjust the scale of the
deformed mesh M′. In Equation 1, the two-by-two
matrix, say Tf , denotes its similarity transformation
with s and r, and its rotation component T′

f can
be found by re-scaling Tf by 1/

√
s2 + r2. Then, we

Fig. 2: The front image (the leftmost one) and the back
image (the rightmost one) are rolled along the silhouette to
generate a pseudo 3D rotation effect (middle).

formulate Ωξ as:

Ωξ =
∑

(i,j)∈E(f)

‖(v′i − v′j)−T′
f (vi − vj)‖2 . (3)

In the second step, we minimize
∑

f Ωξ + wΩH and
compute the final deformed mesh M′′.

4 OPERATIONS ON DOUBLE-SIDED 2.5D
GRAPHICS

A family of operations on double-sided 2.5D graphics
is proposed in this work, and this section describes
each of them in turn as follows.

4.1 The Rolling Operation
Texture rolling is often used as a visual trick to
create animation effects such as moving clouds, words
spinning around an object, and so on. Formulating
this rolling idea on double-sided graphics can enable
us to generate pseudo 3D rotation (see Fig. 2). In short,
such effect can be achieved by exposing (a fraction
of) an object’s back image along its silhouette, which
requires only very little amount of resource in our
case, i.e., the front and back images.

In general, the rolling operation can be easily per-
formed on the input graphics that are square or
rectangular, but in 2.5D worlds, since the shape of 2D
graphical objects may not be that regular, the object
boundaries can be convex or concave, thus making
rolling more complicated to perform. To address this,
our idea is to first embed the given shape (for both
the front and back images) onto a rectangular domain
by a mesh parameterization process.

The procedure is as follows: First, the user can
optionally select (by marking on the SVG) part of
the input shape as the region-of-interest (ROI) for
performing rolling. In this way, we can localize the
effect of rolling to part of the input shape. If this
substep is skipped (as in the case of Fig. 3), the rolling
operation affects the entire shape. After that, the user
is required to just successively mark up four points,
say a, c, b, and d, on the silhouette of the ROI, which
define the corners of a parametric domain and the
rolling direction. The rolling direction is set to be
perpendicular to the boundary lines, ab and cd (see
the red and blue boundary lines shown on the left

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

a c

b d

() ()

() ()

u=0.0
v=1.0

u=0.5
v=1.0

u=0.0
v=0.0

u=0.5
v=0.0

Fig. 3: Left: Illustrations of the user-specified boundary
points, a, b, c and d, and the defined parametric space (u,v).
Right: illustration of rolling direction. The front and back
images are represented by red and blue colors, respectively.

of Fig. 3), in parametric domain. In computing this
parameterization, the goal is to find a mapping that
minimizes the distortion between the original mesh
and the parameterized mesh with fixed and given
boundaries, that are, ab, cd, ac, and bd. Once these
boundaries are fixed in the parametric domain, we
minimize the distortion by enforcing each parameter-
ized vertex ui to satisfy∑

uj∈N(ui)

(cotαij + cotβij)(ui − uj) = 0 , (4)

where N(ui) is the 1-ring neighborhood of vertex ui;
vertex ui is the corresponding vertex of vi in the
parametric domain; αij and βij are the angles at the
opposite sides of the edge (vi, vj) in the original mesh;
and the conformal weight cotαij + cotβij is adopted
to preserve the triangle shape in the parameterization
(see also [19]).

To efficiently perform rolling interactively, the
shape mesh with both the front and back images are
embedded and packed side-by-side in a uv parametric
space with normalized range [0, 1]×[0, 1]. As shown in
Figs. 3 and 4, the front and back images are embedded
in parametric range u: [0.0, 0.5] × v: [0.0, 1.0] and u:
[0.5, 1.0] × v: [0.0, 1.0], respectively.

In our implementation, since SVG is used as our
input shape data structure, we actually can examine
its patch-based hierarchy (see Figs. 4 and 5), and then
perform the rolling operation by sliding a clipping
window in the parametric space. Figs. 4 and 5 show
an example, where the brighter region is the clipping
window (the amount of sliding is based on the mag-
nitude of rolling), and those objects who overlap with
the window boundary are clipped in the parametric
space before taken to be rendered. Here we apply the
polygon clipping algorithm by Vatti [20] to efficiently
clip these geometric objects that are represented by
discrete and closed polygons. In addition, since the
geometric objects in SVG are stored in a hierarchical
structure, we use a depth-first search strategy to look
for overlapping shapes and thus can skip those nodes
whose ancestors are completely inside or outside the
clipping window.

Fig. 4: The parametric space. The front (red) and back (blue)
images are embedded side-by-side in a common parametric
space. Hence, rolling can be performed by sliding a clipping
window (the brighter region) in this space.

....

Fig. 5: Illustration of hierarchical SVG clipping. Left: the
clipping of the front graphics; center: the clipping of the
back graphics; right: the clipping result, which can still be
represented as a hierarchical SVG.

To enrich the visual illustration of the rolling effect,
we can put in shading as a depth cue. To simulate
shading on double-sided graphics, we define a shad-
ing map whose color is brighter in the middle and
darker near the boundaries (see the rendering results
in Fig. 2). In this way, we can simulate 3D shading
or cartoon effects. Lastly, it is worth noting that the
silhouette and shape mesh of the rolling object is
unchanged during the rolling operation because to
perform the rolling, we only need to modify the way
we map the SVG onto the ROI. By this means, we do
not require re-triangulation and re-parameterization
during the rolling action and we can adjust the
amount of rolling interactively in our system. Here,
the boundary-aware triangulation is just a one-time
offline pre-process for each input shape while the re-
parameterization is done only after marking up the
four corner points.

4.2 Twisting Operation

Twist is a characteristic feature, which is com-
monly used in 2D cartoons to produce an intriguing,
provocative effect that is not necessarily physically-
based (see Fig. 6 for examples). Using double-sided
graphics, we can create and simulate such a visual
effect by mashing the front and back images. Our
proposed method is described as follows. First, a
family of sine curves, denoted by fk with frequency
α and shift factor β, is created to model the front and
back region boundaries (see the top figure in Fig. 7):

fk = sin(α(x− kβ) + π/2), 0 < β < π , (5)

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 6: Twist examples in cartoons.

Fig. 7: Modeling the twisting effect in 2D.

and the first curve (last curve likewise) is specially
modeled as

fs =
{

f−1 if x > x0

−1 otherwise , (6)

where x0 = π/α − β is the x-coordinate of the point
on f−1 with y = −1. Observing that every visible
point on the graphical object being twisted comes only
either from the front or back side, thus the front and
back images are interchanged in the twisting region
(see the middle figure in Fig. 7). The divisions are
based on the intersections between neighboring fk’s:{

sk = (k − 1/2)β
ek = π/α + (k − 3/2)β .

(7)

Hence, we have a mixture of both front and back
within the range x ∈ [sk, ek], while the other ranges
involve only a single side. Finally, all mesh vertices
within the twist region are deformed by perturbing
their x-coordinates based on the [sk, ek]-range that it
falls into, and then removing the back-facing elements
by culling. This is done by linearly interpolating the
pair of corresponding boundary curves in the related
region (see the bottom figure in Fig. 7 for the result).
See also an example result shown in Fig. 8.

4.3 Folding Operation
Folding can be used to partially or fully expose the
back side of a double-sided graphical object using the

Fig. 8: Twisting results.

procedure outlined in Fig. 9. After the user sketches a
folding line and initiates a folding action (Fig. 9b), our
system bends the corresponding region(s) and creates
local layering (Fig. 9c). Further than that, we can also
deform the boundaries on the folding line to make the
results appear more natural (Fig. 9d).

In detail, this operation is implemented as follows.
First, the user (optionally) selects an ROI and then
specifies a folding line by sketching. Our system
then computes the intersections between the folding
line and the shape mesh within the ROI, and re-
triangulates the shape mesh to make it pass through
the folding line. After that, the user can select an ob-
ject part to fold and specify the folding direction, i.e.,
forward or backward folding. Then, the selected part
can be interactively bended to create a mirror-reflected
local layering about the folding line. In addition, a
tunable refinement curve can also be applied in terms
of a handle constraint to locally deform the mesh by
using the shape manipulation engine.

In generating the refinement curve, a cubic Bezier

(a) (b)

(c) (d)
Fig. 9: Folding a double-sided graphics. (a) The back
graphics; (b) the front graphics and the folding line (in red);
(c) the folding result before refining the boundary along the
folding line; (d) after refining the boundaries.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

P1 P2

C1 C2

θ θ

Fig. 10: The generation of a cubic Bzier curve for deforming
the boundaries on the folding line.

Folding line 1

Folding line 2

Fig. 11: Illustration of keyframe setting. The in-between
folding lines along the boundary of the ROI can be gener-
ated to produce a folding animation.

curve is used. As illustrated in Fig. 10, the intersection
between the folding line and shape mesh is denoted
by the line segment P1 − P2 with additional control
points, C1 and C2, for the Bezier curve. In our system,
the two parameters, angle Θ and length |P1C1|, are
tunable, and they take default values of 45 degrees
and |P1P2|/2, respectively. Besides, to generate a fold-
ing animation, our system allows the user to set
keyframes for folding as shown in Fig. 11. After that,
our system can smoothly compute the in-between
folding lines along the boundary of the ROI and
generate the corresponding folding animation. Note
further that by using the boundary-aware triangu-
lation, we can efficiently preserve the shape silhou-
ette while providing sufficient geometric information
(with not too many triangles) for performing the three
interactive operations proposed in this section.

5 USER INTERFACE AND INTERACTION
SCENARIOS

Our user interface is shown in Fig. 12. All the oper-
ations can be interactively performed with real-time
visual responses from the system. Thus, the users
can interactively and intuitively edit the double-sided
graphics, which is very helpful for them to design
and create their own graphical works. To provide an
easy-to-use interface, we use sketching and markup as
interactive inputs instead of low-level manipulation
through primitive elements (e.g., vertex and face) on
the shape mesh. Besides, the users can also animate
the double-sided graphics by time-stamping poses
of the shape. The time-stamped poses can act as
keyframes so that our system can generate animations

by interpolating user mark-up and sketch information
in-between keyframes. Reviewers are suggested to see
the accompanying video for interactive demonstra-
tions. In the following, the interaction scenarios for
the proposed operations are described.

Rolling in action. As shown in Fig. 13, the rolling
operation can be done by the following steps: First,
we define the ROI by sketching a rough curve or a
closed polyline. Next, we mark up four corner points
on the silhouette of the ROI, and our system can then
compute the parameterization and the rolling direc-
tion. After that, we can drag the mouse left-to-right
or right-to-left to produce and interactively adjust the
(amount of) rolling effect. This handy operation can
quickly create pseudo 3D rotation on vector graphics.

Twisting in action. Twisting is performed as follows.
First, we can mark up a pair of lines on the input
shape to define boundaries for twisting (see the pair of
red lines in Fig. 14 (left)). Then, we can drag the mouse
in a direction roughly parallel to the lines to produce
the twisting effect (see Fig. 14 (right)). The magnitude
of drag controls the amount of twisting and dragging
to different directions can produce clockwise or anti-
clockwise twisting.

Folding in action. As shown in Fig. 12, the folding
operation can be done by simply sketching a folding
line (the red line in the figure) after marking up
the ROI. Then, the system can create and render
the folding result with local layering in real-time. In
the end, we can also enable the user to tune the
refinement curve to smooth the folding boundary.

6 EXPERIMENTAL RESULTS

Our proposed system is implemented and evaluated
on a personal computer with a 2.66 GHz CPU and 4
GB memory. On average, for a double-sided graphical
object modeled with a shape mesh of 3, 800 triangles

Fig. 12: Our user interface. Easy-to-use sketching and
markup are provided as interactive inputs. For instance,
after sketching a folding line (the red line) on the graphics,
our system can update the mesh and render the result in
real-time.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 13: Rolling example. Left: sketch to select the ROI;
right: drag the mouse to roll the ROI.

Fig. 14: Twisting example. Left: sketch two boundary lines
on the graphics; right: drag the mouse to interactively
adjust the amount of twisting.

and around 40, 000 line segments on both the front
and back SVG graphics, the computation time for the
preprocessing (i.e., mesh parameterization) and the
mesh manipulation engine are around 0.08 seconds
and 0.018 seconds, respectively. In addition, the time
taken for performing the rolling, folding, and twist-
ing operations are 0.195 seconds, 0.327 seconds, and
0.035 seconds, respectively. Thus, this shows that our
system is able to provide real-time visual responses
upon users’ edit.

To demonstrate the feasibility of our proposed sys-
tem, we further recruited seven participants, includ-
ing one professional artist, whose ages range from 20
to 38. After about 10 minutes’ tutoring time on the
system usage, each participant was given 15 minutes
to practice and try the system followed by another 15
minutes to prepare their designs and corresponding
materials. After that, the participants can use our
system to make up their designs. Figs. 15 and 17 show
some example designs, which took the partipants
about 3 minutes to create while the more complex de-
sign shown in Fig. 16 took the participant 15 minutes’
time to finish.

As demonstrated in Fig. 15, the artist used the
folding operation to create an animation showing
peeling of an orange, pea husking, and peeling of a
banana. He took about 3 minutes, 1.5 minutes, and
2 minutes to create these animations (from top to
bottom), respectively. The results shown in Fig. 17
were created by other participants; these animation
results were created in about 3 minutes, 2 minutes,
1 minute, 1.5 minutes, 20 seconds, and 20 seconds
(from top to bottom), respectively. Operations includ-
ing rolling, folding, twisting, and mesh manipulation
were all involved in these examples. Fig. 16 shows a

more complicated example created by the artist; it in-
volves the use of multiple double-sided graphics with
layering. To create this work, the folding animation on
each double-side graphics is first created separately
by using our system; then, these animations are com-
bined with a specified rendering order by layering.
These participant-made results showed that a variety
of interesting effects and animations can be easily and
efficiently created by our system.

7 CONCLUSIONS AND FUTURE WORK

This paper introduces a novel model of 2.5D graphics,
namely double-sided 2.5D graphics, which allows us
to bring in novel 2.5D effects through rolling, twisting,
and folding. Similar to the spirit of local layering, this
proposed idea can help enrich the way we model,
render, and animate graphics in 2.5D worlds; in par-
ticular, we can perform the proposed operations in-
teractively with our system. Key contributions in this
paper include the idea of enriching 2.5D graphics with
back images, the boundary-aware triangulation to effi-
ciently preserve the shape silhouette while supporting
the 2.5D operations, a tailored shape manipulation
engine that integrates previous techniques for SVGs,
a set of novel visual effects, i.e., rolling, twisting, and
folding, produced from double-sided 2.5D graphics,
and easy-to-use user interface operations to produce
these effects efficiently. Very little modeling and edit-
ing effort is needed from the user’s side.

The effectiveness of our approach is demonstrated
with several examples presented in this paper, includ-
ing those on various cartoon characters, fruit graph-
ics, and a cola bottle. Furthermore, we also provide
average-time statistics on using our system, which
shows that our approach can be implemented as an
interactive system. Lastly, we recruited a number of
participants including a professional artist to try out
our system; a variety of creative works on double-
sided graphics were designed and created by them
with our system, which demonstrate the feasibility,
applicability, and efficiency of this work.

ACKNOWLEDGMENTS

We would like to thank membership No. 905020928 in
www.nipic.com for the cute cartoon rabbit (Fig. 12),
and Pumpkin Creative Inc. for DEVILROBOTS c©
(Fig. 17(2nd row)).

REFERENCES
[1] J. McCann and N. Pollard, “Local layering,” ACM Trans. on

Graphics (SIGGRAPH 2009), vol. 28, no. 3, article no. 84, 2009.
[2] C. Barnes, D. E. Jacobs, J. Sanders, D. B. Goldman,

S. Rusinkiewicz, A. Finkelstein, and M. Agrawala, “Video
puppetry: A performative interface for cutout animation,”
ACM Trans. on Graphics (SIGGRAPH Asia 2008), vol. 27, no. 5,
article no. 124, 2008.

[3] A. Rivers, T. Igarashi, and F. Durand, “2.5D cartoon models,”
ACM Trans. on Graphics (SIGGRAPH 2010), vol. 29, no. 4, article
no. 59, 2010.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 15: Folding animations created by an artist. Top: peeling an orange; three rolling regions are defined; middle: husking
a pea; bottom: peeling a banana; two rolling regions are defined.

Fig. 16: Animation of flower blossoming created by the artist. This work is done by layering multiple double-sided
graphics. The folding operation is applied to each doubled-sided graphics first, and the folding results are then combined
to generate this animation.

[4] J. McCann, “Image editing and creation with perception-
motivated local features,” 2010, PhD Dissertation: CMU-CS-
10-130.

[5] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes, “Sketch: An
interface for sketching 3D scenes,” ACM Trans. on Graphics
(SIGGRAPH 1996), pp. 163–170, 1996.

[6] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: a sketching
interface for 3D freeform design,” ACM Trans. on Graphics
(SIGGRAPH 1999), pp. 409–416, 1999.

[7] O. A. Karpenko and J. F. Hughes, “SmoothSketch: 3D free-
form shapes from complex sketches,” ACM Trans. on Graphics
(SIGGRAPH 2006), vol. 25, no. 3, pp. 589–598, 2006.

[8] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “FiberMesh:
designing freeform surfaces with 3D curves,” ACM Trans. on
Graphics (SIGGRAPH 2007), vol. 26, no. 3, article no. 41, 2007.

[9] Y. Gingold, T. Igarashi, and D. Zorin, “Structured annotations
for 2D-to-3D modeling,” ACM Trans. on Graphics (SIGGRAPH
Asia 2009), vol. 28, no. 5, article no. 148, 2009.

[10] X. Li, J. Xu, Y. Ren, and W. Geng, “Animating cartoon faces by
multi-view drawings,” Computer Animation and Virtual Worlds,
vol. 21, no. 3-4, pp. 193–201, 2010.

[11] H. Winnemöller, A. Orzan, L. Boissieux, and J. Thollot, “Tex-
ture design and draping in 2D images,” Computer Graphics
Forum, vol. 28, no. 4, pp. 1091–1099, 2009.

[12] F. D. Fiore, P. Schaeken, K. Elens, and F. V. Reeth, “Automatic
inbetweening in computer assisted animation by exploiting
2.5D modelling techniques,” Proc. of Computer Animation 2001,
pp. 192–200, 2001.

[13] T. Igarashi, T. Moscovich, and J. F. Hughes, “As-rigid-as-
possible shape manipulation,” ACM Trans. on Graphics (SIG-
GRAPH 2005), vol. 24, no. 3, pp. 1134–1141, 2005.

[14] K. Wiley, “Druid: Representation of interwoven surfaces in
2 1/2 D drawing,” Ph.D. dissertation, University of New
Mexico, 2006.

[15] M. Eitz, O. Sorkine, and M. Alexa, “Sketch based image
deformation,” Proceedings of Vision, Modeling and Visualization
(VMV), pp. 135–142, 2007.

[16] D. Sýkora, J. Dingliana, and S. Collins, “As-rigid-as-possible
image registration for hand-drawn cartoon animations,” Pro-
ceedings of International Symposium on Non-photorealistic Anima-
tion and Rendering, pp. 25–33, 2009.

[17] W. Baxter, P. Barla, and K. Anjyo, “N-way morphing for 2D
animation,” Computer Animation and Virtual Worlds, vol. 20, no.
2-3, pp. 79–87, 2009.

[18] G.-X. Zhang, M.-M. Cheng, S.-M. Hu, and R. R. Martin,
“A shape-preserving approach to image resizing,” Computer
Graphics Forum, vol. 28, no. 7, pp. 1897–1906, 2009.

[19] M. S. Floater and K. Hormann, “Surface parameterization: a
tutorial and survey,” Advances in Multiresolution for Geometric
Modelling, pp. 157–186, 2005.

[20] B. R. Vatti, “A generic solution to polygon clipping,” Commu-
nications of the ACM, vol. 35, no. 7, pp. 56–63, 1992.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 17: Animations created by general participants (non-artist). 1st row: a rabbit animation created by combining rolling,
folding, and mesh manipulation. 2nd row: a cartoon character (DEVILROBOTS c©) animation created by combining rolling
and mesh manipulation. 3rd row: a bottle animation created by combining rolling and mesh manipulation. 4th row: a
cartoon character animation created by combining by folding and mesh manipulation. 5th row: a ghost animation created
by rolling. 6th row: twisting the hair of a cute girl character.

