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Abstract—A novel content-aware warping approach is introduced for video retargeting. The key to this technique is adapting videos to
fit displays with various aspect ratios and sizes while preserving both visually salient content and temporal coherence. Most previous
studies solve this spatiotemporal problem by consistently resizing content in frames. This strategy significantly improves the retargeting
results, but does not fully consider object preservation, sometimes causing apparent distortions on visually salient objects. We propose
an object-preserving warping scheme with object-based significance estimation to reduce this unpleasant distortion. In the proposed
scheme, visually salient objects in 3D space-time space are forced to undergo as-rigid-as-possible warping, while low-significance
contents are warped as close as possible to linear rescaling. These strategies enable our method to consistently preserve both the
spatial shapes and temporal motions of visually salient objects, and avoid over-deformations on low-significance objects, yielding a
pleasing motion-aware video retargeting. Qualitative and quantitative analyses, including a user study and experiments on complex
videos containing diverse cameras and dynamic motions, show a clear superiority of our method over related video retargeting methods.

Index Terms—Video retargeting, spatial and temporal coherence, optimization, warping
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1 INTRODUCTION

MESH and Seam carving are recent techniques
of content-aware retargeting. Seam carving itera-

tively removes a surface seam passing through insignifi-
cant regions, and video warping optimizes the mapping
from a source to a target video using various spatial
and temporal constraints. While these two techniques
generate good results, it should be noted that seam
carving may yield jagged edges due to the removal of
discontinuous seams, and video warping (i.e., a continu-
ous solution) may generate motion distortions due to the
inconsistent scaling factors of grids occupied by an object
[1]. To reduce motion distortion in resizing, an object-
preserving warping is proposed. The basic idea behind
our method is to measure content significance and resize
videos by utilizing information of object motions rather
than pixel motions as adopted in the previous studies
[2], [3], [4]. Information of object motions implies inter-
frame object correspondence, which allows the definition
of a significance map for volumetric objects and the
consistent preservation of both the shapes and motions
of volumetric objects in warping.

In the proposed retargeting scheme, the frames in the
original video are consistently segmented into several
patches in preprocessing, and the corresponding patches
in frames are assigned the same significance value in
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consideration of consistent warping and temporal co-
herence preservation. Volumetric objects, i.e., a sequence
of corresponding patches in frames, with high signifi-
cance values are forced to undergo as-rigid-as-possible
deformation using similarity transformation constraints,
while distributing distortions to low-significant regions
through an optimization process. The use of object-
based significance map and the approach of optimally
distributing distortion reduces the need of perfect video
segmentation, allowing our method to cope with various
cases.

The proposed method is built on previous image retar-
geting works [5], [6], and the goal of preserving visually
salient motions is the same as that of the works [2],
[3], [4]. However, our method has substantial differences
from these previous methods. First, an object-preserving
retargeting scheme is proposed to ease unpleasant mo-
tion distortions caused by inconsistent warping on a
volumetric object. As shown in Fig. 1, the inconsistent
deformation on the moving shuttle (middle figure) is
efficiently eased (right figure) by our method. Second,
instead of using a pixel-based or grid-based significance
map in warping, an object-based one is proposed to
preserve content and reduce weaving artifacts. Third, a
similarity transformation constraint is adopted to force
visually salient objects in 3D spatial-time space to un-
dergo as-rigid-as-possible deformation in warping. Be-
cause of these differences, the proposed method has the
main contribution of yielding better retargeting results
in terms of motion and shape preservation compared
with the related methods [4], [7]. The remainder of this
paper is organized as follows. Section 2 reviews the re-
lated work. Section 3 presents the proposed approaches.
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Section 4 discusses the experimental results, and Section
5 presents the conclusions, limitation, and future work.

Fig. 1. Motion distortion. Left: the original frame. Middle:
the retargeting result generated by Wang et al. [4]. Motion
distortion occurred on the moving shuttle due to the
inconsistent warping (see the parts marked by red lines
on the original frame). Right: the retargeting result with
good shape preservation generated by our method.

2 RELATED WORK
Many content-aware retargeting techniques have re-
cently been proposed. We only describe the video re-
targeting methods in this section. For image retargeting,
readers can refer to previous excellent surveys [8], [9].
Content-aware video retargeting methods can be clas-
sified into three categories, cropping, seam carving, and
warping, based on the operation used in resizing. In the
cropping category [10], [11], [12], [13], [14], [15], virtual
camera motions, such as panning, zooming, and artificial
scene cutting, are produced to maximize the amount
of visually salient content within the cropped frames
and preserve temporal coherence. However, the methods
cannot guarantee that the cutting of meaningful content
can be avoided. In the seam carving methods [7], [16],
[17], [18], [19], [20], [21], a one-pixel width continuous or
discontinuous surface seam with minimal significance in
the space-time volume is iteratively carved or inserted to
reduce or enlarge the input video to the desired aspect
ratio. This technique allows for high flexibility in pixel
removal, and thus, can be applied to some interesting
applications, such as object removal. However, carving
either continuous or discontinuous seams sometimes
yields discontinuous artifacts on visually salient objects,
causing visual distortion.

In the warping category, methods optimize a map-
ping or warping using several spatial deformation and
temporal coherence constraints to preserve content [2],
[3], [4], [22], [23], [24], [25]. In the work of Wolf et al.
[22], the original video is resized using non-uniform
global mesh warping. Retargeting is formulated as a
least-squares problem. The mapping from the source
video to the target display is optimized by setting pixel
significances which are measured by gradient magnitude
as well as detected faces and motions. Therefore, the
motions of high-significance objects are preserved, while
the low-significance regions are squeezed or stretched.
In addition, the position changes of temporally adjacent
pixels are penalized in a least-squares optimization to
preserve temporal coherence. To efficiently preserve tem-
poral coherence and reduce waving artifacts, Wang et al.

[2] proposed to align consecutive frames by estimating
inter-frame camera motion and to constrain the relative
positions of the aligned frames. They incorporated the
motion-aware constraints with an adaptation of the grid
mesh warping [5] to preserve visually salient objects.
Zhang et al. [23] preserved temporal coherence using
a 3D random walk. However, this technique ignores
motion information, and may thereby lead to temporal
artifacts. Krähenbühl et al. [24] proposed an interactive
framework, combining key frame and structure line con-
straints edited by automatic algorithms, for video analy-
sis and retargeting. Niu et al. [25] consistently resized
foreground objects using a motion history map, and
maintained background regions by constraining them
by the previous frame. This method can well preserve
temporal coherence and foreground objects; neverthe-
less, the preservation of structure lines in the background
may be ignored. Lately, Wang et al. [3] combined crop-
ping and warping operators into their framework, where
the cropping removes temporally recurring content, and
the warping utilized available homogeneous regions to
absorb deformations while preserving motions. In ad-
dition, without compromising the resizing quality, their
later work [4] solved the scalability problem caused by
a global optimization over the entire space-time volume.
This warping method can yield good retargeting results
for many cases. However, an object occupying several
grids may suffer from inconsistent scaling and deforma-
tion. This may lead to motion distortions, especially for
visually salient objects and structure lines. In this study,
we ease this spatiotemporal distortion using an object-
preserving warping technique.

The concept of object-preserving retargeting has been
introduced in the related studies [18], [25], [26], [27]. Tao
et al. [26] and Niu et al. [25] extracted and preserved
foreground objects in warping based on the fact that
users are more interested in the foreground objects.
However, preserving only the foreground objects may
be unsuitable for images/videos that contain visually
salient content in the background. Sun and Ling [27]
integrated an objectness map with significance map for
the preservation of object completeness in seam carving.
The resulting images containing the complete objects can
be applied to thumbnail browsing. In Grundmann et
al. [18], to preserve objects in video, a spatio-temporal
saliency measurement is proposed, in which the input
video is segmented into spatio-temporal regions and
the saliency is calculated by averaging the frame-based
region saliency. Inspired by the work [18], the object-
based saliency is used to drive the proposed object-
preserving mesh warping for the purpose of consistent
object deformation in warping.

3 CONTENT-AWARE VIDEO RETARGETING
Fig. 2 shows the schematic workflow of the proposed
method. The basic idea is to resize videos by utiliz-
ing the information of object motions. Such informa-
tion implies inter-frame object correspondence, which
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Fig. 2. System workflow. With the aim of consistently preserving content, we utilize an object-based significance map,
generated by combining segmented objects and detected saliencies, to force visually salient objects in 3D space-time
space to undergo as-rigid-as-possible deformation in video warping. This object-preserving warping can efficiently
reduce object inconsistencies in both spatial and temporal deformation.

allows the definition of a significance map for volumetric
objects and the consistent preservation of both shapes
and motions of volumetric objects in warping. In the
proposed method, volumetric objects are first extracted
in preprocessing using video segmentation technique.
Then, a significance measurement for the segmented
objects is performed to generate a significance map
for retargeting (Section 3.1). In the significance map
generation, the context-aware saliency estimation [28]
is adopted to generate a saliency value for each pixel
in each frame. Afterward, the significance of each seg-
mented volumetric object is determined by a global
normalization process. In the retargeting step, a grid
mesh is created to cover the frames, and the proposed
object-preserving warping is performed to deform the
grids within a volumetric object with high significance
as rigidly as possible during the resizing (Section 3.2). We
first describe the generation of object-based significance
map in Section 3.1, followed by the motion-preserving
video warping which is described in Section 3.2.

3.1 Object-based significance map generation
Many techniques of significance map generation for
content-aware retargeting have been proposed. Pixels
with large gradient magnitudes and saliency values are
generally considered as significant pixels [5]. In addition,
instead of generating significance map of each frame
individually, the pixel significance is measured by con-
sidering the content in neighboring frames [2]. However,
inconsistent deformation may arise when using such
pixel-based (or grid-based) measurement in retargeting.
In this study, to consistently preserve content, we adopt
an object-based significance measurement, which is in-
spired by the work [18]. The 3D space-time volume of
the original video is initially segmented into several
homogenous volumetric objects, each of which is as-
signed a significance value by a global normalization.
With the aid of the globally normalized significance
map, volumetric objects can be potentially deformed in
a consistent manner.

In the first step, the hierarchical graph-based video
segmentation proposed by Grundmann et al. [29] is
performed to partition the input video, and the saliency
detection approach [28] is adopted to give each pixel
an initial significance value. The following is a brief
introduction to this video segmentation approach. In
[29], the spatiotemporal segmentation begins by over-
segmenting a video into volumetric objects using a
graph-based segmentation technique. An object graph is
then constructed over the initial spatiotemporal segmen-
tation, and a hierarchical tree of segmentation is created
by iteratively repeating this process over multiple levels.
Segmentation quality is further improved using dense
optical flow to guide temporal connections in the object
graph. This approach can cope with long videos by
including a parallel and out-of-core technique and a clip-
based process in the partition scheme. Therefore, the
scalability of video segmentation enables us to cope with
long videos.

Once the segmented volumetric objects and the pixel
salient values are obtained, the object saliency is calcu-
lated by simply averaging the salient values of pixels
within the volumetric object. Then, each grid is assigned
a saliency of object that occupies this grid. This process
is called global normalization of object saliency. Figs.
3 and 4 demonstrate the capability of our method to
consistently deform objects and reduce weaving, respec-
tively. In Fig. 3, the segmented object occupies grids
having similar significance values. Thus, the object can
potentially be deformed consistently, and the weaving
effects can also be efficiently reduced in warping. Note
that generating a perfect video segmentation for all cases
is difficult, even when using a state-of-the-art segmen-
tation approach. Fortunately, with the aid of distortion
propagation and the object-based significance map, the
proposed approach can address the problems caused
by unsuccessful object segmentation. The experiment of
video retargeting with unsuccessful segmentation will
be demonstrated in Section 4. In Fig. 4, we show the
advantage of using globally normalized significance map
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Fig. 3. Consistent deformation. From left to right: original video frame, grid mesh with significance value visualized by
color ranging from blue (lowest significance) to red (highest significance), warped grid mesh, and retargeting result.

in retargeting. With this significance map, the weaving
artifacts are considerably reduced.
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Fig. 4. Comparison of video retargeting using signifi-
cance map without (a) and with (b) the process of global
normalization. The motion trajectories of red point in
(a), (b), and the original video are visualized by yellow,
green, and red, respectively. These trajectories are shown
together in (c) to demonstrate the reduction of weaving
artifacts.

3.2 Motion-preserving video warping
An uniform grid mesh Mt = (Vt,Et,Qt) containing
a vertex set Vt = {vt1, ..., vtnv

}, an edge set
Et = {et1, ..., etne

}, and a grid set Qt = {qt1, ..., qtnq
} is

created for t-th frame in the original video, where nv ,
ne, and nq represent the number of vertices, edges,
and grids, respectively. In addition, a set of objects
Ot = {objectt1, ..., object

t
no
} and its corresponding

significance values St = {St1, ..., Stno
} are used in

warping, where no represents the number of segmented
objects. Here, all grid meshes have the same connectivity
and are independent of video content. To preserve the
spatial content and temporal motions, two energy
terms, namely, spatial content preservation energy and
temporal coherence preservation energy, are defined with
an optimization solver. These two energy terms are
described in the following subsections.

3.2.1 Spatial content preservation energy
Assume that the original video with m× n resolution
is resized into a new video with m′ × n′ resolution.
The proposed object-preserving warping aims to find
a deformed mesh V′ = {v′1, ..., v′nv

} for each frame in
which the grids in a segmented object are consistently
deformed. Three energy terms, namely, rigid transforma-
tion, linear scaling, and grid orientation, are defined for

this purpose. The term of rigid transformation is used
to avoid inconsistent deformation; thus, it is formulated
as measuring the rigidity of object in warping:

DSimT (M) =

no∑
i=1

(si ×
∑

e′
j
∈E(objecti)

∥∥(e′j − TijC′i)
∥∥2), (1)

where si is the significance value of object i. e′j and C′
i

represent the deformed edge and the deformed represen-
tative edge of object i, respectively. The representative
edge is selected as the pivot in object deformation.
Generally, the edge closest to the object center is suitable
to represent the object and thus suitable to be selected
as the representative edge. Tij is the similarity transfor-
mation, containing a scale factor and a rotation factor,
between ej and Ci. Therefore, this energy measures the
changes of edge geometric relations in warping.

To avoid over-deformation on low-significance objects,
an energy term with respect to linear scaling is included:

DLinT (M) =

no∑
i=1

((1− si)×
∑

e′
j
∈E(objecti)

∥∥e′j − LTijC′i
∥∥2), (2)

where L is the matrix of linear scaling
(m× n)→ (m′ × n′). This energy term is defined
as measuring the difference between deformed and
linear-scaling objects. Thus, this term warps low-
significance objects as close as possible to linear
scaling. The weighting factor is set to (1− si), and
the low-significance object has a large weight to
avoid over-deformation. Thus, this term can avoid
over-deformations on backgrounds of videos.

The term of grid orientation proposed in [3] is used
to avoid skewed artifacts. This term is defined as
measuring the grid line bending. Assume that a grid
q : {va, vb, vc, vd} contains two horizontal edges (va, vb),
(vd, vc) and two vertical edges (va, vd), (vb, vc). To mea-
sure grid deformation, this term is formulated as the
distance of the y component between the vertices of the
deformed horizontal edges, and the distance of the x
component between the vertices of the deformed vertical
edges:

DOri(M) =
∑
q∈Q

(
∥∥v′ay

− v′by
∥∥2 + ∥∥v′dy − v′cy

∥∥2
+
∥∥v′ax

− v′dx
∥∥2 + ∥∥v′bx − v′cx

∥∥2), (3)

where the suffixes x and y represent the x− and
y−component of the vertex position, respectively. The
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total spatial energy is obtained by summing up the
individual spatial energy terms:

DSp(M) = (α×DSimT (M) + (1− α)×DLinT (M))

+DOri(M),
(4)

where α is the weighting factor for the energy terms
DSimT and DLinT . This weighting factor controls how
rigid the high-significance objects are. Setting a larger
value forces the high-significance objects to be more rigid
in warping. To preserve the shapes of visually salient
content, α is set to 0.7 in all experiments.

3.2.2 Temporal coherence preservation energy
The temporal energy consists of two energy terms:
warping coherence and z-line bending. The term of
warping coherence is formulated as measuring the
consistency of object deformation to achieve the
goal of consistent warping of volumetric objects:

𝑣𝑎 𝑣𝑏 

𝑣𝑐  𝑣𝑑  

𝑞 

DObjectCoh(M)

=

no∑
i=1

∑
q∈oi

(
∥∥(v′b,t − v′a,t)− loix,init

∥∥2
+
∥∥(v′c,t − v′d,t)− loix,init

∥∥2
+
∥∥(v′d,t − v′a,t)− loiy,init

∥∥2
+
∥∥(v′c,t − v′b,t)− loiy,init

∥∥2),
(5)

where

loix,init =
1

2× noi
q

×
∑
q∈oi

((v′b,init − v′a,init) + (v′c,init − v′d,init))

loiy,init =
1

2× noi
q

×
∑
q∈oi

((v′d,init − v′a,init) + (v′c,init − v′b,init));

loix,init and loiy,init are the average grid deformations of
object oi in the initial frame (denoted by frame init); noiq
is the number of grids belonging to object oi and va,init,
vb,init, vc,init and vd,init are the corner vertices of grid q
in frame init. The initial frame of an object is set to its
first-appearing frame. Another solution is to search for
the optimal frame using a two-pass optimization scheme.
In the first pass, each frame is resized individually,
and then selects the optimal frame for each object. In
the second pass, a global optimization is performed
to warp the video. However, this two-pass manner is
time-consuming. To consider the algorithm efficiency, we
subsequently warp the frames and the first-appearing
frame of an object is selected as the initial frame. In
Eq. 5, this energy term is defined as measuring the
difference of average grid deformations of object oi in
frame t and in the initial frame. Thus, this term can force
the volumetric objects, including non-rigid and moving
objects, to deform consistently in warping.

Similar to the energy term of grid orientation that
measures the grid line bending in spatial space, the
energy term of z-line bending measures the grid line
bending in temporal space. This term is formulated as

the position difference of vertex in frame t and in the
neighboring frame t− 1.

DLineCoh(M) =
∑
vi∈V

∥∥v′i,t−1 − v′i,t
∥∥2 (6)

The total temporal coherence preservation energy is
obtained by summing up these two temporal energy
terms:

DTep(M) = β ×DObjectCoh(M)

+ (1− β)×DLineCoh(M),
(7)

where β is the weighting factor for these two energy
terms. To well preserve the temporal coherence of ob-
jects, a large value is assigned to β (β is set to 0.7 in the
experiments). Fig. 5 shows the benefit of these temporal
constraints through a comparison of retargeting with and
without the proposed energy terms. The result shows
that the weaving effect is considerably reduced and the
temporal coherence is improved by using these energy
terms.

Original frames and  
significance map x 

t (a) 
(d) (b) 
(c) 

Fig. 5. Comparison of warping optimization. (a) Warping
without the temporal energy terms; (b) warping with the
z-line bending term; (c) warping with both the z-line
bending and warping coherence terms; (d) original motion
trajectory.

3.2.3 Minimization of Energy Function
By combining the spatial and temporal energies, the final
optimization for frame t is formulated as:

argmin
v′
i
,t
(DSp +DTep), (8)

subject to the constraints of the positions of boundary
vertices. Here, we assign the same weight to these two
energy terms to balance the spatial and temporal energy
contribution. In the implementation, similar to [5], we fix
the top-left vertex position of the frames and constrain
all the boundary vertices of each frame to slide along
their respective boundary lines. Finally, a least-squares
linear system with a sparse design matrix can be ob-
tained from (8). We solve this system using the conjugate
gradient method. The iterative process is terminated
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when the movements of boundary and internal vertices
are smaller than 0.5 pixels. Since the neighboring frames
usually have similar deformations, the result of the pre-
vious frame is used as an initial estimation for the next
one. Such that the optimization can converge in fewer
iterations. In our implementation, the deformed mesh
geometry V′ = {v′1, ...v′nv

} is sequentially determined for
each video frame, instead of determining all deformed
meshes over the entire video volume, making our ap-
proach able to cope with long videos. In addition, the
error accumulation is very few since only three frames
are used in per frame optimization.

4 EXPERIMENTAL RESULTS AND DISCUSSION
We tested our algorithm on a desktop PC with Core
i5 2.66 GHz CPU and 4 GB memory. For a 688× 286
pixel resolution video with 250 frames, the average com-
putation time for video warping is 8.49 seconds (0.034
seconds per frame). Similar to the work [4], the compu-
tational complexity of our video warping is O(N · T ),
where N is the video pixel resolution and T is the
number of frames, since the proposed scheme is sequent
per-frame resizing.

For a fair comparison, most videos used in the related
works were tested in the experiments. Several repre-
sentative cases that videos contain evident foreground
objects and structure lines are shown in Figs. 6, 8, and
10, and the others are attached as accompanying doc-
uments. All results were automatically generated using
the default parameters, that is, grid resolution is 20 pixles
× 20 pixels and α = β = 0.7. Please refer the results and
comparisons to our accompanying and supplemental
videos, especially as the temporal effects are difficult to
visualize in still frames.

Fig. 6 provides the results of the proposed retargeting
processes, including video segmentation, saliency de-
tection, significance normalization, and mesh warping.
Our method resizes videos by utilizing object motions
and thereby enabling the consistent preservation of both
the shapes and motions of volumetric objects during
warping. For example, in Fig. 6, the regions with high
significance value (i.e., visually salient content) are well
preserved.

Accurate volumetric object extraction is difficult and
over-segmentation with unfavorable object boundaries
may occur. Fortunately, the proposed warping scheme
can ease the difficulty suffering from imperfect video
segmentation. For instance, in Fig. 7, the foreground
object is partitioned into several patches with unfavor-
able boundaries. In this case, the effect of inconsistent
deformation is still reduced compared with the method
using a grid-based significance map. We test videos with
over-segmentation and partially incorrect segmentation
to further demonstrate the robustness of our approach.
The results in Figs. 8 and 9 show that our method does
not rely heavily on the accuracy of object segmentation.
Comparison. Most retargeting methods are based on
seam carving or mesh warping. Therefore, our method

Fig. 6. Retargeting results generated by our approach.
From top to bottom: original frames, segmentation results,
saliency detection results, significance maps used in re-
targeting, and our retargeting results.

Original frame 

Fig. 7. Comparison of retargeting using object-based
(top) and grid-based (bottom) significance maps. Incon-
sistent deformation occurs in the region marked by red
rectangle.

is compared with the standard seam-carving-based
method (i.e., improved seam carving (ISC)) [7], and the
recent video-warping-based method (i.e., per-frame opti-
mization (PFO)) [4], in addition to the linear scaling (LS).
For a fair comparison with the PFO, we used the same
resolution for the grid mesh. The comparisons are shown
in Fig. 10. The ISC [7] has higher flexibility in pixel
removal, and thus, can be applied for object removal.
However, the comparisons indicate that the ISC may
yield discontinuous artifacts on visually salient objects,
sometimes producing noticeable visual distortion. The
PFO [4] has the advantage of absorbing distortion by
homogeneous regions. However, the human vision is
sensitive to inconsistent deformation of visually salient
content. In contrast, our method can efficiently eases
inconsistent deformation by the object-preserving warp-
ing. For examples, in Fig. 10, the roadside in the 1st data,
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Original frame 

Fig. 8. Video retargeting using general segmentation (top) and over-segmentation (bottom). From left to right: original
video frame, segmentation results, significance maps, and retargeting results. The segmented objects are represented
by colors.

Fig. 9. Video retargeting using unsuccessful object segmentation. From left to right: original video frame, segmentation
result, significance map, and our result. The incorrect object segmentation is marked by red rectangle.

the moving shuttle in the 2nd data, the red box and paper
in the 3rd data, the white lines in the 4th data, and the
shape of foreground object in the 5th data are well pre-
served. Moreover, using temporal coherence constraints
with normalized significance map greatly reduces wav-
ing artifacts (refer to our supplemental videos). These
properties enable our method to generate better results
compared with those from related methods.

The goal of preserving motions in warping is the
same as the work [4], therefore a quantitative analysis
on motion preservation is conducted by using correla-
tion coefficient. The correlation coefficient between two
sets of motion trajectories mi and mj is defined as
Corr(mi,mj) =

Cov(mi,mj)
σmi

σmj
, where Cov(mi,mj) means

covariance between mi and mj , and σm represents the
standard deviation of m. In this experiment, two clips
containing evident foreground objects and structure lines
are tested. Several feature points in the original clip and
the retargeting results generated by our method and
PFO are manually selected. The correlation coefficient
between the motion trajectories formed by the selected
feature points in the generated retargeting results and
original clip are calculated. The analyses shown in Fig.
11 indicate that our results are closer to the original clips
compared with the results of PFO. To further show how
important the proposed spatial and temporal energy
terms and object-based significance map are in shape
and motion preservation, we compare with the approach
that use PFO warping and the proposed significance
map. The results show that using our significance map
in PFO (Fig. 12, bottom figure) can improve PFO’s
retargeting quality (Fig. 12, middle figure). However,
shape and motion distortions still occur (see the motion
shuttle). The distortions can be eased by using the pro-

posed energy terms in warping (Fig. 12, top figure). This
experiment shows that not only the significance map but
the energy terms are contributions to better shape and
motion preservation.

Original PFO Our results 

Corr=0.959 Corr=0.983 

Corr=0.872 Corr=0.909 

Fig. 11. Quantitative analysis using correlation coefficient
(denoted by Corr). The correlation between the trajecto-
ries of the selected points (marked by red) in the original
clip and generated retargeting clip is calculated.

User Study. A user study involving 90 participants,
aged 20 to 47 years old, was conducted to evaluate
our method. We used the survey system and the paired
comparison method provided by Rubinstein et al. [9].
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Original frames ISC PFO LS Ours 

Fig. 10. Comparisons with the related methods, including improved seam carving (ISC) [7], per-frame optimization
(PFO) [4], and linear scaling (LS).
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Fig. 12. Comparison of video retargeting using different
significance maps and warping approaches. Top: Original
video frame and our retargeting result; middle: signifi-
cance map used in [4] and the retargeting result using
PFO; bottom: our significance map and the retargeting
result using PFO.

Participants are shown two retargeted videos side by
side at one time, and asked to choose the one they like
better. Following [9], we use videos having the attributes
that can be mapped to the content-aware retargeting
objectives: preserving content and preserving structure.
It is likely difficult to use a dataset containing too many
attributes and video categories in the user study. Partici-
pants are likely to loose their patience/concentration in a
long user study. Therefore, the video dataset is made up
of only eight videos having the main attributes, evident
foreground objects and structure lines (see the supplemental
video). From the number of votes shown in Fig. 13, this
survey indicates that our results are better than those
generated by the ISC, PFO, and LS for the videos having
structure lines and evident foreground objects.

628 

525 

610 

92 

195 

110 

0% 20% 40% 60% 80% 100%

(c)

(b)

(a)Ours : ISC 

Ours : PFO                   

Ours : LS  

■  ■ 

■  ■ 

■  ■ 

Fig. 13. The total number of votes for our method and the
methods ISC [7], PFO [4], and LS.

5 CONCLUSIONS, LIMITATION AND FUTURE
WORK

A novel object-preserving warping for content-aware
video retargeting is presented. In the optimization of
grid mesh warping, the spatial content preservation con-
straints force the visually salient content to undergo as-
rigid-as-possible deformation, and the temporal coher-
ence preservation constraints considerably reduce weav-
ing artifacts. Moreover, the optimization process with
the normalized significance map propagates distortions
to low-significant regions. These processes significantly
ease the problems of unpleasant motion deformations
caused by inconsistent warping, enabling our approach
to effectively cope with videos containing dense infor-
mation and structure lines. The comparisons and user
study clearly show the superiority of our method over
the related methods in terms of content preservation.
At present, our approach may have the problem of
over-constraining when the input video fills with global
structure lines, as shown in Fig. 14. In such a case,
the result is similar to linear rescaling, because all the
structure lines and most objects are deformed rigidly.
As for video segmentation, we have demonstrated that
the problems caused by imperfect object segmentation
can be handled by our warping scheme, meaning that
the retargeting quality does not rely heavily on the
accuracy of object segmentation. In the future, we plan
to extend our retargeting scheme to stereo videos and
multi-temporal geospatial data.
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